
Localisation

Arjuna Rao Chavala
Chief Consultant, Arc Alternatives

arjunaraoc@arcalter.com

Title: FOSS Localisation
Author: Arjuna Rao Chavala
Ebook 1st Edition: Apr 2013
Copyright: Arjuna Rao Chavala
License: CC-BY-SA 3.0
Acknowledgements: Linux For You (The individual articles appeared in the magazine from April
2012 to Mar 2013)
Front Cover: Ubuntu 11.04 Telugu, Inside Back Cover: Globalisation Process

Foreword
I started my entry into Free and open source software by attempting to install Redhat operating
system for setting up internal email for a small startup software team that I was heading in the year
2000. We used it for browsing websites and email. Subsequently I bought a home computer and
installed Redhat. I followed the developments in FOSS and continued to upgrade my system with the
latest releases. Around 2005, the software started supporting Indic languages, my interest to use the
computer in my mothertongue made me explore a lot more about Indic input and localisation.
Seeing that the browser and Openoffice were not available or good quality in Telugu, I worked with
net friendst to address these issues. I contributed to the release of Telugu version of Firefox 3.0.2,
Libreoffice 3.x and Ubuntu 11.04 over the years.

When I noticed few bugs with Telugu rendering, I attempted to fix them spending huge amount of
time exploring different pieces of software. At last I was able to fix them. As the best way to
popularise the indic language computing is to get the children to use it as they learn about computers,
I made few attempts to meet with School education officials in Andhra Pradesh to impress on them
the need for using Telugu for Telugu Medium Students. The response I got was that Students are
learning a bit of English through Computer Classes and it is not desirable to deprive them of this
opportunity. State like Kerala have started using FOSS in its schools and I thought I can convince
them on the merits of that experience. I realised that there is a need for more followup. Being a
resident of Bangalore, I am unable to do so. I thought of sharing my learnings and the result is a set
of articles published in LFY/OSFY, which I have now compiled to bring out as an e-book.

Bangalore
Date:16 April 2013 Arjuna Rao Chavala

Table of Contents

Part 1: Localisation: An Introduction ...3

Part 2: The Status of Indic Localisation ...5

Part 3:The Gettext framework...8

Part 4: Localise an Application Menu ...11

Part 5:Localise Application Help Files ...14

Part 6:Web-based Platforms for Localisation ...16

Part 7: Localising User Documentation ...19

Part 8: Ensuring consistency in localisation through Style guides ...21

Part 9: The status of Education and Training ...23

Part 10: The status of Research in Localisation ...25

For U & Me Overview

If you have ever tried to install an operating system, you
will be greeted with several questions concerning the
configuration of the system. It could be the location, which

determines properties like the time zone, date format and the
type of keyboard, and the support for additional languages.
These settings also aid in the setting-up of software servers
for updates. The technology behind this is called Localisation.
It is also referred to as l10n, as there are ten letters between ‘l’
and ‘n’. For example, Ubuntu 11.04 was released with support
for 60 languages.

The configuration of a computing device to
enable usage in a language chosen by users, and in an
environment familiar to them, is called Localisation.
When computers were originally developed in the West,
they only had support for English-speaking countries. As
the use of computers increased worldwide, the need to
operate the computer in a language of the user’s choice
grew in importance. Suppliers had to adapt to this need by
developing different versions of software and hardware.
Even when hardware cannot be customised, software can
be modified to support localisation needs.

The importance of localisation
While English has become the lingua franca of the international
business world, there are over 6909 languages used in the world,
as per Lewis, M Paul (ed.), 2009. Ethnologue: Languages
of the World, Sixteenth edition. Dallas, Tex. (http://www.
ethnologue.com/). Huge populations are deprived of the full
benefit of computing if the devices do not support their preferred
languages. Without technology’s help, there is a danger that these
languages could become extinct. When a language dies, the rich
cultural heritage of a segment of the world population disappears.
Hence, localisation is important.

More and more operating systems and application software
are being localised. This is opening up employment opportunities
too, for people skilled in languages and computers.

Figure 1: Ubuntu 11.04 in Telugu (http://commons.wikimedia.org/wiki/
File:Ubuntu11.04Te2DUnity)

an Introduction
Localisation

This article is aimed at language computing enthusiasts interested in using
computing devices in their native language, developers interested in supporting
localisation, linguists interested in understanding translation issues, and business
managers exploring the potential of localisation.

For U & Me Overview

36  | april 2012  | LI NUX For You  |  www.LinuxForU.com

Overview For U & Me

The history of localisation
The origins of localisation can be traced to translation, where
a speech or written document is translated from one language
to another. Once computing devices became common,
there was need to organise and customise the translation for
software environments. That’s how localisation was born. You
can understand the growth of localisation with the example of
the Debian distribution. Figure 2 shows the Debian versions
and their language support, with a steady increase in the
number of languages.

Debian
Version

Code
name

Release date #of languages

3 woody 2002-07-19 40

4 etch 2007-04-08 58

5 lenny 2009-02-14 63

6 squeeze 2011-02-06 70

Figure 2: Debian releases and language support

While early localisers had to struggle with simple editors,
specialised tools and platforms were later developed to
support localisation.

Localisation vs internationalisation
Internationalisation is usually abbreviated to i18n (as there are 18
letters between the letters ‘l’ and ‘n’). It denotes the packaging
of the strings used in software so that the corresponding
strings from a user’s language can be deployed without
impacting the functionality of the application. Apart from that,
internationalisation is a set of practices followed by developers
so that the application presents information and/or processes as
per the expectations of the target users. Localisation, for most
common usage, is concerned with translating the menu strings and
application messages to the users’ desired language. This requires
a good knowledge of the target language, and a style guide for
translation. For documentation localisation, a good command of
the language and translation skills will also be needed.

As can be seen from the chart (Figure 3), localisation and
internationalisation are closely interlinked, so work on both
never ends. As long as software or the software environment
changes, localisation work continues. This also explains
why, while there are so many languages spoken in the world,
localisation is limited to a smaller subset of them.

Localisation initiatives in Indian languages
IndLinux: The earliest localisation initiatives in India
were from IndLinux, a Free Software group. IndLinux was
started by Prakash Advani and Venkatesh Hariharan in
December 1999 as a portal. Linux Bangalore/2001 was the
first event when Indian Free Software groups got together
to share developments on localisation. At Linux/Bangalore
2002, GNOME in Hindi was demonstrated. Various teams
working with other Indian languages contributed to other
language versions of GNOME, which resulted in the release

Figure 3: Internationalisation and localisation (http://commons.wikimedia.org/
wiki/File:Globalisationchart)

The author has over 25 years of experience working in the government,
in private organisations and NGOs. Currently, he is an independent
consultant in the areas of IT, program/engineering management and
open source. Over the last four years, he has contributed to Firefox,
Debian, and Ubuntu localisation, and font and keyboard enhancements
for Indic languages. He can be reached through his website http://
arjunaraoc.blogspot.in/ and Twitter ID @arjunaraoc.

By: Arjuna Rao Chavala

of Rangoli 1.0 beta in 2005, supporting several languages.
Other teams brought out language-specific Linux distributions
around the same time. The language support became part of
mainstream distributions like Fedora, Debian and Ubuntu
over the years. When Ubuntu 11.04 was released on April 28,
2011, it included boot-time local support for the following
Indian languages apart from English: Bengali, Gujarati, Hindi,
Kannada, Malayalam, Marathi, Nepali, Tamil and Telugu.

FUEL: Frequently Used Entries for Localisation (FUEL) was
initiated by Rajesh Ranjan to improve the quality of localisation,
by standardising the translations for most common words or
phrases. Twelve languages have been part of the initiative.

Microsoft’s initiative: Windows 7 has been released with
support for 95 languages. For Indian languages, Microsoft has
a language portal called BhashaIndia, through which it enables
users of its products to participate in localisation.

What’s next?
Through this series of articles, I aim to provide information
on various localisation platforms and tools, which can help
readers to become active contributors in improving the
language support for their preferred languages. I would
appreciate your feedback at arjunaraoc@ieee.org.

For more information, visit:
http://indlinux.org/
https://fedorahosted.org/fuel/
http://bhashaindia.com/

product
localisation

www.LinuxForU.com  | LI NUX For You  |  april 2012  |  37

For U & Me Overview

I Like
Linux For You

Let’s first take a look at the status of localisation in
India from the localiser’s perspective. In order to
quantify the status of localisation, we need to make

a few choices about the software components. A computer
user experiences several software, right from the moment the
computer is switched on till it is switched off. These include
boot and installation programs, the Graphical User Interface
(GUI), a browser and several application software.

In the past, installation programs supported only
English. After the introduction of GUIs and the progress
of localisation, installation software (except for the initial
boot screen) started sporting non-English languages. For the
purposes of assessment, I’ve picked the Debian installer, as
Debian and its derivatives have the maximum usage.

Many different GUIs are available in the free software
world; GNOME and KDE are the most common, and
GNOME is the most popular, which is why I’ve chosen to

analyse the extent of its localisation. Of the many different
browsers that are available, Firefox is the most popular, hence
fits the bill for our analysis.

Software applications are specific to a task—whether
preparing documents, analysing data, preparing presentations,
working with pictures, playing music or video, etc. An office
package that comes with a word processor, spreadsheet and
presentation software has become perhaps the most common
application. LibreOffice (a fork of OpenOffice) is the most
common office software for free software users; hence, it has
been selected as the fourth component for analysis.

For the 22 official Indian languages, the status of support for
each of the selected software components, in their latest versions
(in terms of release, beta, and availability) is given in Table 1.

When you carefully analyse the data, you will find that:
�� Urdu has zero localisation.
�� There are eight languages that have 100 per cent release-

The Status of Indic Localisation
Localisation
Having understood the history and growing importance of
localisation in India, as well as the key local initiatives being
taken in the previous article of this series, let us now look
at the status of localisation in Indian languages, the current
usage and the potential for growth.

For U & Me

Part—2

36  | april 2012  | LI NUX For You  |  www.LinuxForU.com

Overview For U & Me

level coverage of all components.
�� All Indian languages (barring Urdu) have release or beta

versions of LibreOffice.
�� Localisation efforts appear to have been prioritised in

the following order: LibreOffice, GNOME, Firefox and
Debian installer.

�� Some Indian languages like Hindi, Tamil and Bangla
are international in nature, and have benefited from
worldwide contributors. The exception seems to be Urdu.

The user statistics
Localisation will improve only when there are users, so it is good
to understand the user statistics. For FOSS, it is not easy to find
out the extent of language use, as software is freely distributed.
Firefox has a facility called Blocklist, which is used to ensure
security for users by helping with warnings about suspicious
sites, add-ons, etc. This feature records the preferences of
Firefox users, each time they use the browser. Hence, the Firefox

Table 1: Localisation Status of the Main Components of Free Software

Language India Speakers (Cen-
sus 2001, in millions)

Wheezy Debian In-
staller Level 1

Gnome 3.4# Firefox 11.0 Libreoffice 3.5.1#

Assamese 13 NA Release Release NA

Bengali 83 Release Release Release Release

Bodo 1.4 NA NA NA Beta

Dogri 2.3 NA NA NA Beta

Gujarati 46 Release Release Release Release

Hindi* 258 Release Release Release Release

Kannada 38 Release Release Release Release

Kashmiri 5.5 NA NA NA Beta

Konkani 2.5 NA NA NA Beta

Maithili 12 NA Beta Beta Beta

Malayalam 33 Release Release Release Release

Manipuri 1.5 NA NA NA Beta

Marathi 72 Release Release Release Release

Nepali 2.9 Release Beta NA Beta

Oriya 33 NA Release Release Release

Punjabi 29 Release Release Release Release

Sanskrit 0.01 NA NA NA Beta

Santhali 6.5 NA NA NA Beta

Sindhi 2.5 NA NA NA Beta

Tamil 61 Release Release Beta Release

Telugu 74 Release Release Release Release

Urdu 52 NA NA NA NA

* There are 422 million Hindi speakers, if you include those who speak its various dialects.
A 75 per cent translation of the GNOME and LibreOffice UI is taken as usable localisation.

statistics are a good indicator of usage. From both the reading and
editing perspective, the statistics of Wikipedia, the fifth-largest
Internet site, have also been considered. Apart from this, bloggers
constitute an important segment of language computing. The
analysis of a bloggers' survey done by the Indibloggers.in portal
has been used as another indicator. Table 2 shows the statistics of
users for a sample of Indian languages.

A careful look at this table reveals that Indic users are a
very tiny fraction of those who speak local languages. Hindi,
Marathi, Tamil, Telugu, Malayalam and Bengali are ahead
of the rest. Urdu registers its presence in Wikipedia and the
bloggers' world.

Potential for growth
The recently released Census 2011 data on households
with computers provides a rich source of information
on the scope for using Indian languages. Of 246 million
households, 9.5 per cent have computers, which amounts

www.LinuxForU.com  | LI NUX For You  |  june 2012  |  37

For U & Me Overview

Language Localised
Firefox users
in India as of
26 March 2012

Wikipedia
worldwide
Active
Editors
as of Feb
2012

IndiBlog-
gers Sta-
tistics as
of May
2009

Assamese 20

Bengali 63 0

Bodo

Dogri

Gujarati 16 13

Hindi* 1928 62 316

Kannada 138 22 25

Kashmiri 0

Konkani

Maithili

Malayalam 240 90 32

Manipuri 0

Marathi 254 47 55

Nepali 21

Oriya 9

Punjabi 4 6

Sanskrit 18

Santhali

Sindhi 1

Tamil 393 88 126

Telugu 284 38 47

Urdu 19 6

to 23.37 million people. The census also shows that
53.32 per cent of households have mobile phones,
which means 131 million people. As smartphone prices
reduce, we can expect households to migrate to tablets
or smartphones with touchscreen interfaces. This will
lead to a tremendous use of computing devices in India
in the near future, as Indic language users will be able to
comfortably get over the English language barrier that is
associated with text-based input methods.

Now that you know more about where Indian language
localisation stands, you can help by delving into the details
of your preferred language(s), and contributing to promote
and popularise Indian language computing. I look forward
to your questions/feedback.

L10n statistics:
•	 Debian installer: http://d-i.debian.org/l10n-stats/
•	 GNOME: http://l10n.gnome.org/languages/
•	 Firefox: http://www.mozilla.org/en-US/firefox/all.html
•	 LibreOffice: https://translations.documentfoundation.org/
Usage information:
•	 Firefox: http://bit.ly/1YnP8L
•	 Wikipedia: http://stats.wikimedia.org/EN/Sitemap.htm
•	 Indiblogger stats: http://blog.indiblogger.in/2009/06/15/

statistics-from-the-indian-blogosphere/
•	 Household highlights: http://www.censusindia.gov.

in/2011census/hlo/hlo_highlights.html

For more information

The author is an independent consultant in the areas of IT, program/
engineering management and open source. He is also the president of
Wikimedia India and the WG Chair for the IEEE-SA project on ‘Virtual
keyboard standard for Indic languages’. He can be reached through
his website arjunaraoc.blogspot.in and his Twitter ID @arjunaraoc.

By: Arjuna Rao Chavala

Table 2: Users of localisation (partial statistics)

38  | june 2012  | LI NUX For You  |  www.LinuxForU.com

For U & Me Overview

Even if localisers work with Web-based environments, it
is important that they have a good understanding of the
underlying details to be able to appreciate the localisation

message source string formats. Despite several initiatives
to standardise internationalisation support across computer
operating systems, it has not been achieved. If one needs to
deliver software to run on multiple systems, a software-specific
framework is used, and language packs are built specially for
such software. The main examples of this kind of software are
Firefox and LibreOffice. Let's explore locale briefly before
getting into the details of Gettext system,the most common
framework with support for various programming languages.

Locale
Locale is the term for the language and country specific
practices for reporting date, time,currency etc of the user. A
program written in English without any notion of localisation
is designated to have the locale ‘C’, probably arising from
the most popular system programming language 'C'. All
software supporting localisation needs to operate as per the
locale of the user. The locale basically consists of a two-letter
language code and a two-letter country code, separated by an
underscore (ll_CC). For example, it is en_US for US English
and te_IN for the Indian language Telugu. When software with
localisation support executes, it uses the locale definition in the
environment to pick the relevant language message catalogs.

The Gettext system
Gettext was originally developed by Sun Microsystems
in the early 1990s. GNU released its version in 1995. It is
implemented for most programming languages and scripts.
This includes a set of tools, guidelines, and a run-time library
to utilise translations, plus a few independent programs to
manipulate the various messages.

Any computer program has statements defining data,
reading data and writing data, apart from computation on
the same. An internationalisation system should be able to
operate on the data without affecting the rest of the program,
which means that the data definition and usage need to
pass through special functions. At the same time, the use

of special functions should not distract from the readability
of the program. Gettext is the name of the function that is
used for this purpose. A function whose name is a simple
underscore (_()) is used as an alias for gettext(), to improve
readability. A programmer has to internationalise a program,
and then use the usual compilation path for building the
program. Another path is required to extract translatable
messages, localise and build the localised message set, as
well as to place the same in the specified location. More
extensive information on the guidelines for writing messages
is available in the GNU Gettext manual. These deal with
constant strings, plurals and information specifically
relevant to the programmer, translator and maintainer.

A primer on internationalisation and localisation
Let’s take the simple ‘C’ language program ‘Hello World’,
as in Listing 1, and look at how it can be internationalised
and then localised. Note that the code has been tried out
on Ubuntu 12.04, set up with English and Telugu locales,
and a proper build environment for the GNU C compiler
(GCC 4.6.3). Please ensure the same or a similar working
environment before trying these programs.

Listing 1: hello.c

/*hello_English program*/

#include <stdio.h>

#include <stdlib.h>

int main() {

 printf("Hello World\n");

 return 0;

}

Internationalisation
Listing 2: hello18n.c

/*hello_internationalised program*/

#include <stdio.h>

#include <stdlib.h>

#include <libintl.h>

#include <locale.h>

The Gettext Framework
Localisation

Having looked at Indian language localisation in the
previous article of this series, let us now look at a
major system for internationalisation called Gettext.

For U & Me

Part—3

58  | juLY 2012  |  LINUX For You  |  www.LinuxForU.com

Overview For U & Me

#define _(String) gettext (String)

int main() {

 setlocale (LC_ALL, "");

 bindtextdomain ("helloi18n", "/usr/share/locale");

 textdomain ("helloi18n");

 printf (_("Hello World\n"));

}

The internationalisation instrumentation consists of
adding header files (libintl.h and locale.h), and calling three
functions at the start of the program. The setlocale function
signals to the runtime that the locale as defined in the user
environment needs to be used. The bindtextdomain function
takes a package name and directory name as arguments. For
a typical software project, there will be many source files that
need to be compiled as a group, to build a package. Since we
are compiling just one file, I have just used the name of the
source file. The directory refers to the path where the message
catalogues (the set of translated messages for the program)
are available. The textdomain function is used to associate the
filename for messages used in the program. The printf call is
modified by placing the format string inside a function _().
The preprocessor will generate the gettext function calls. The
localisation software xgettext (explained later) uses this as a
keyword to extract translatable messages.

Now, let us compile and run the program:

$ gcc -o helloi18n helloi8n.c

Hello world

Localisation
Let us extract the strings, translate them, and prepare a binary
so that the program can use another locale, using the Gettext
library programs.

$ xgettext -k_ --package-name=helloi18n --package-version=1.0 -o

helloi18n.pot helloi18n.c

The parameter -k_ specifies that we are interested in
messages that are part of the function call with the underscore
name. The package and version names are used in the header
information. Usually, these are specified as part of the build
files. As our example is fairly simple, I have used command-
line arguments to pass these names. The option -o helps
specify the file type as portable object template (pot) rather
than the default portable object (po).

Listing 3: helloi18n.pot

SOME DESCRIPTIVE TITLE.

Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER

This file is distributed under the same license as the PACKAGE

package.

FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.

#

#, fuzzy

msgid ""

msgstr ""

"Project-Id-Version: helloi18n 1.0\n"

"Report-Msgid-Bugs-To: \n"

"POT-Creation-Date: 2012-06-04 22:43+0530\n"

"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"

"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"

"Language-Team: LANGUAGE <LL@li.org>\n"

"Language: \n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=CHARSET\n"

"Content-Transfer-Encoding: 8bit\n"

#: helloi18n.c:15

#, c-format

msgid "Hello World\n"

msgstr ""

Listing 3 shows the pot file for our example program. It
consists of a few header lines of information, followed by the
source string and translated string, prefixed with msgid and
msgstr, respectively. The first message is designed to give general
information about the translation, such as the date, the name of the
translator and team, etc. The subsequent lines provide messages
used in the program. Each message follows the syntax as given in
Listing 4.

Listing 4: Syntax for messages in a .po file.

white-space

translator-comments

#. extracted-comments

#: reference...

#, flag...

#| msgid previous-untranslated-string

msgid untranslated-string

msgstr translated-string

As the meaning of a word could be different based on the
context, the above format provides options for the translator and
programmer to provide additional context information. The file
name and line number at which the message appears is provided
as part of the reference. The flag is used to indicate the status
or specific nature of translation. If it is fuzzy, it means that the
translator needs to confirm the translation, as it was guessed
from previous translation data. If it is obsolete, it could mean
that it can be removed from the file. If it is C-format, it is an
alert to the translator that this message is used in input or output
statements, and follows the C language format and can have
format information, newline information, etc. The previous-
untranslated-string is updated by the msgmerge program (not
described in this article), when creating a new pot file using
previous translation files. Let’s use helloi18n.pot and a version
for the Telugu language with blank translations.

www.LinuxForU.com  |  LINUX For You  |  june 2012  |  59

For U & Me Overview

$ msgfmt -o te.mo -v te.po

$ cp te.mo /usr/share/locale/te/LC_MESSAGES/helloi18n.mo

Results
Let’s run the program with the default English locale, and
then change the locale to Telugu. After which, let’s run the
program again, and then change the locale back to English. Note
that the Telugu text rendering will not be perfect in a typical
terminal, due to limitations in rendering the complex script of
the language. You can direct the output to a file, and view the
properly rendered message by opening that file in an editor. You
can also use Terminator software (from software.jessies.org)
which can display complex scripts properly. If you are using an
older system, you can use LANG in place of LANGUAGE for
the proper operation of the following code. Alternatively, you
can change your language settings to the desired language, log
out, and log in with the new set-up, and try the code.

$ echo $LANGUAGE

en_US.utf8

$./helloi18n

Hello World

$ export LANGUAGE=te_IN:te

$./helloi18n

$export LANGUAGE=en_IN:en

That concludes our primer on Gettext. We looked at
how a typical ‘C’ language source can be instrumented to
support internationalisation. We also looked at how the
messages are extracted using xgettext, translated using
msginit, and placed in the proper location, so that the run-
time library can use them.

Several tool-kits, Web-based tools and standalone software
were developed to allow the localiser to focus on translation
without worrying about the nitty-gritty of files and formats. We
will cover a few popular tools in forthcoming articles.

•	 Introduction to Internationalisation Programming,
Issue 103, November 2002, By Olexiy Ye Tykhomyrov
in the Linux Journal, http://www.linuxjournal.com/
article/6176?page=0,0

•	 Gettext manual: http://www.gnu.org/software/gettext/
manual/gettext.html

•	 Terminator Cross platform GPL Terminal emulator with
complex text rendering support. http://software.jessies.org/
terminator/

Resources

The author is an independent consultant in the areas of IT, program/
engineering management and open source. He is also the president of
Wikimedia India and the WG Chair for IEEE-SA project P1908.1 “Virtual
keyboard standard for Indic languages”. He can be reached through
his website http://arjunaraoc.blogspot.in and Twitter id @arjunaraoc.

By: Arjuna Rao Chavala

$ msginit -l te_IN -o te.po -i helloi18n.pot

This program will ask for the email of the user (given as
x@y.com in this example), and use it as the contact address in
the header. Now open the file in an editor (for example, gedit),
and type in the translation for the string "Hello World\n" as "

\n" in the target language Telugu, and save the
file. The resultant file is shown in Listing 5.

Listing 5: te.po corresponding to helloi18n.pot

Telugu translations for helloi18n package.

Copyright (C) 2012 THE helloi18n'S COPYRIGHT HOLDER

This file is distributed under the same license as the helloi18n

package.

arjun <x@y.com>, 2012.

#

msgid ""

msgstr ""

"Project-Id-Version: helloi18n 1.0\n"

"Report-Msgid-Bugs-To: \n"

"POT-Creation-Date: 2012-06-04 22:43+0530\n"

"PO-Revision-Date: 2012-06-04 22:54+0530\n"

"Last-Translator: arjun <x@y.com>\n"

"Language-Team: Telugu\n"

"Language: te\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=UTF-8\n"

"Content-Transfer-Encoding: 8bit\n"

#: helloi18n.c:15

#, c-format

msgid "Hello World\n"

msgstr " \n"

Let’s use the po file to build machine object (.mo)
version, which is also called as message catalogue and
store it in a specified location, with the filename changed
to the package name. To do this, you may need superuser
access as the standard location for storing such files has
restricted access. If you do not have this, you can use
your home directory, with appropriate replacements in the
bindtextdomain function call of source code. The message
catalogues are placed in a directory structure consisting of
language code/LC_MESSAGES in the designated path. For
example, Telugu messages are placed in /usr/share/locale/
te/LC_MESSAGES/helloi18n.mo and Hindi messages are
placed in /usr/share/locale/hi/LC_MESSAGES/helloi18n.mo.

This allows supporting additional locales by placing
the localised message catalog files, without the need
for recompiling the source, as the run-time library
will automatically check for the translated message
catalogues, and if it does not find any, will use the default
messages. This also provides flexibility for the translation
to progress independently.

60  | juLY 2012  |  LINUX For You  |  www.LinuxForU.com

For U & Me Overview

of interest at the Translation Project. You may find that it is
either not translated, is partially done or is fully translated.
If it is not translated, you can download the pot file from the
package host site or from the Translation Project site, and start
localisation. In case you find the translation completed for your
language, you can review the localised application and identify
any improvements that are needed. Then you can download the
current localisation file (.po) from the Translation Project, and
continue with the following process, to improve it.

Poedit
Poedit needs to be installed manually; a simple sudo apt-get
install poedit will do it. Run Poedit and you will be prompted
to enter a few details that will be useful as you work with the
tool—your user name, email ID, etc. If you are already using
Ubuntu with your locale, you can get the benefit of generating
the translation memory from your current set-up—select
the 'Translation Memory' tab in Preferences and add your
language; then select Generate Database. A screen (Figure 4)
with suggested paths of localisation catalogues will be shown.
If you continue, all .mo files in those directories will be read,
and a translation memory database will be created.

Poedit has three panes: the top one shows the messages
catalogue (both the source language message in English,
and the target language message, if already translated),

In this article, let us focus on localising an application by picking a typing tutor called Klavaro
as an example. It is simple and requires to be localised for most Indian languages. Please note
that the author has tried the tasks mentioned in this article on Ubuntu 12.04 with Telugu locale
and you may need to adapt the instructions suitably for your locale/language of interest.

As Klavaro is not part of the default installation disk, it
needs to be installed manually. Please select Ubuntu
Software Centre, search for Klavaro and install it—or

in a terminal, run sudo apt-get install klavaro.
For a localiser, it is important to explore the application

to understand its functioning, and review how menus appear.
The first screen you see when you run it is shown in Figure 1.
You will notice that Klavaro has a simple menu structure at
the bottom part of the screen. In the top portion, you will find
a few big buttons, which lead to the basic steps of how to use
the program. As these are examples of help files, containing
text about how to use the application, I will cover such
localisation for them in a future article.

The first thing to do is to click 'About' to learn more about
the application. From this, you will find the version number
and a link to the site (http://klavaro.sourceforge.net/) where
code and other information is available. On that site, you will
find information about localisation (see Figure 2) and also
the platforms or environments in which the localisation is
coordinated. From the Web page, we learn that it uses Gettext
for i18n and Translation Project (http://translationproject.org/)
as the platform for l10n.

One also finds Poedit as part of the sample tools suggested
for localisation, so let’s use it to localise this package. Take a
moment to check the status of localisation for your language

Localise an Application Menu
Localisation

46  |  AUGUST 2012  |  LINUX For You  |  www.LinuxForU.com

Overview For U & Me

the second
pane shows the
source string,
and the third one
shows the target
language message
edit box. The
status row at the
bottom presents
the statistics of
the file like %
translated, total
strings, fuzzy
strings, etc.

Rename the
downloaded
pot file or po file
as klavaro<<languagecode>>.po (for Telugu, Klavarote.
po) and open it in Poedit. You will find the panes populated
with information from the file. If your translation is zero
per cent done, it is better to seed the localisation with
messages that are in use from the previous localisations of
other applications, if there is a match. Select 'Automatically
translate using translation memory' from the 'Catalogue'
menu. You will find some strings automatically translated,
but marked as fuzzy. Scroll down to see the fuzzy
translations. A moment's study will help you identify the
correct and incorrect translations (see Figure 5).

Update the project settings with the package name and other
details (see Figure 6). You may need to browse the plural forms
site (http://translate.sourceforge.net/wiki/l10n/pluralforms).

Now let us just focus on the UI elements in the launch
screen. You can search for these strings, review the existing
fuzzy translations, if any, and update the translation (see Figure
7). After doing this, save the file and exit the application. A
.mo file is automatically generated when you close the file
being edited. Now copy the .mo file to the appropriate location,
as klavaro.mo, using the following command (you will need
administrator privileges; this uses the location for Telugu):

$sudo mv klavarote.mo /usr/share/locale/te/LC_MESSAGES/klavaro.mo

After this, relaunch the application and Klavaro will be
in your locale (see Figure 8 and compare with Figure 1).
Please verify the localisation, and repeat the process if any
mistakes are found which need to be fixed. In this manner,
localisation can be improved to cover all messages.

After confirming that the localised user interface is working
locally, you need to perform the important step of placing the
localised files in the upstream for this project (this means the
Translation Project). For this, you need to contact the localisation
coordinator listed for your language at the Translation Project
and become a member of the language team. Note that it is
important to disclaim any rights over your translations, so that

Figure 1: Klavaro with the English UI

Figure 2: The Klavaro website, translation page

Figure 3: Poedit preferences

Figure 4: Poedit translation memory set-up

they may be reused without any constraints, by sending a signed
declaration to the Translation Project coordinator. Traditionally,
this entailed sending a scan of a paper certificate by email and
waiting for the response, which, at times, stretched to a few

www.LinuxForU.com  |  LINUX For You  | AUGUST 2012  |  47

For U & Me Overview

responds with any errors, those need to be addressed before
attempting to send the attachment again. Once the attachment
is accepted, your localisation will be picked up by all Linux
distributions and will reach the end users in due course of time.

 Note: As multiple input methods are used in the
Indian language alphabet keyboard, short cut keys of
English should be retained in the localisation by adding
them in parentheses. For example, "_Language:" becomes
localised as <localised name for Language>(_L)

There are several other standalone tools like
Gtranslator, Virtaal and Lokalize, which can be used for
localisation. Lokalize is a bit more advanced, as it shows
the progress of localisation graphically for the entire set
of PO files for an application and provides additional
features like glossary support. We will explore it in
forthcoming articles in this series. Please try localising
any software of interest and write in with your questions
on any aspect of localisation.

Figure 5: After automatic translation (tick-mark annotations)

Figure 7: Completed translations for the launch screen menu

Figure 6: Project settings

Figure 8: Klavaro with the Telugu UI

months. This process is now being Web-enabled to make it easy
for users. Then you need to send an email with the package-
version.language.po on the subject line and the localised file
as an attachment to robot@translationproject.org. If the robot

The author is an independent consultant in the areas of IT,
program/engineering management and open source. He is
also the president of Wikimedia India and the WG Chair for
the IEEE-SA project P1908.1 “Virtual keyboard standard for
Indic languages”. He can be reached through his website
http://arjunaraoc.blogspot.in and his Twitter ID: @arjunaraoc.

By: Arjuna Rao Chavala

48  |  AUGUST 2012  |  LINUX For You  |  www.LinuxForU.com

For U & Me Overview

Online help and User manuals are given lesser
priority when localising software. This is usually
due to complexity of the help/documentation and

also inadequate understanding of dealing with the relevant
files. Most help documentation consists of multiple pages
written in some form of markup language with each page
consisting of paragraphs and links to other pages. XML
based mark-up languages have traditionally been used for
help documentation. There are helpful utilities to generate
documentation in HTML, PDF and other online formats.

In this article, I present the structure of the help files,
explore Mallard project for online help and illustrate the
sequence of steps for localising with Gedit as an example.

The structure of help files
On a typical UNIX system, help files are stored as follows:

/usr/share/help

 |--/gedit : Application

 |----/C :Reference help in English-US

 |----/te : Langauge help inTelugu

 |----/hi : Language help in Hindi

Under each help directory, there is a set of mark-up files
and a directory for figures. Each mark-up file can be converted
into a ‘.po’ file, which can be translated in a localisation
environment and converted back to XML. XML utilities are
used for these steps. As there can be several XML files, there
are also tools available to convert all of them into a single ‘.po’
file, which can be converted back to XML files after translation.

After translation, the XML files and figures are copied
into the designated location, so that the system’s help engine
can pick them up as per the locale of the user. For error
checking, the translated files can be viewed in the help
browser, or can be processed to yield HTML or PDF files.

Mallard
Mallard is gaining momentum as a mark-up language better
suited for the purposes of online help. Its chief advantage is
reference inversion, i.e., each page specifies the names of other
pages that are to be linked to it. The Mallard compiler ensures

that help pages are updated with proper links from the source
pages. This makes the documentation evolve with the software,
with changes required to fewer files. A lot of disadvantages of the
older Docbook format have also been overcome with Mallard.

Process for gedit localisation
Let’s look at how to localise the Gedit help into Telugu. Gedit
is a popular and powerful editor in GNOME environment. It
supports internationalized text (UTF-8) and features configurable
syntax highlighting for various languages along with print
preview, configurable fonts. Figure 1 shows the Telugu version
of Gedit (localised) and Figure 2 shows its help page (in
English). Install itstool (on Ubuntu, sudo apt-get install itstool).
If any of the commands in the following steps don’t work, install
the corresponding packages and repeat the steps.

Step1: Locate the reference Gedit documentation on your
system as per the details given earlier, or clone the repository
with git clone http://git.gnome.org/browse/gedit.

Step 2: Build te.po from the reference help files. The
following commands are for the local version of the Gedit
documentation repository, if the Telugu PO file is not already
part of the package: "at /usr/share/help/te".

 Note: I picked the Gedit application as an example
for this, as it is the default text editor of GNOME. I have
tried out everything mentioned in this article on Ubuntu
12.04 and configured it for Telugu. You may need to adapt
the steps for your OS and locale.

$ cd gedit/help/C

$ itstool -l te *.page -o ../te/te.po

Step 3: Translate the PO file. Use Poedit or any PO file
editor or the Gedit text editor itself to translate. Make use of
the translation memories and glossaries available for your
language to enhance productivity and consistency. Keep
Gedit open in the desired locale, and take care to use the
localised UI in the help documentation. One easy way to
ensure this is to generate translation memory and glossary
from the localised UI po file, and to use localisation tool
such as poedit to provide translation tips. As the strings may

Localise Application
Help Files

Localisation

This article focuses on the nuances of localising application help files.

For U & Me

44  | september 2012  |  LINUX For You  |  www.LinuxForU.com

Overview For U & Me

be large in number, it is a good practice to search for the
strings in the displayed root page of the help documentation
and translate them first, before going on to other pages as
per the links from the root page.

Step 4: Generate the MO file from the PO file (msgfmt -v
te.po -o te.mo)

Step 5: Generate XML files with the translated MO file as
input using (itstool -l te -m te.mo -o testte/ *.page). If itstool
throws up errors, please check the PO file for syntactical
correctness, and use the msgmerge utility to merge the
translated PO file with the original PO file to improve the
syntax of the localised PO file

Step 6: Copy the generated mark-up files to the
location used by the help system for the application (cp
-r testte /usr/share/help/te/gedit). Update the figures with
those corresponding to the target locale.

Step 7: View the help in the GNOME Help browser (yelp
/usr/share/help/te/gedit), or launch the application and verify
the quality of the translation.

Step 7: If required, repeat Steps 3-7.
Step 8: Submit the updated PO file as a comment to

the Web-based Gnome documentation page for Gedit (eg:
http://l10n.gnome.org/vertimus/gedit/gnome-3-4/help/te)

Figure 3 shows the help localised into Telugu.
We have explained the structure of the help files and

[1] How to write a manual for a GNOME application with
DocBook—Manuel Rego Casasnovas, http://people.igalia.
com/mrego/mswl/ils/how_to_write_a_manual_for_a_gnome_
application_with_docbook.html

[2] The Mallard website, http://projectmallard.org/
[3] The Itstool website, http://itstool.org/
[4] Gedit documentation links on the Gnome Mallard page

https://live.gnome.org/DocumentationProject/Tasks/
ApplicationHelp

For more information

The author is an independent consultant in the areas of IT, program/
engineering management and open source. He is also the president
of Wikimedia India and the WG Chair for the IEEE-SA Project
P1908.1, ‘Virtual keyboard standard for Indic languages’. He can
be reached through his website http://arjunaraoc.blogspot.in and
Twitter id @arjunaraoc.

By: Arjuna Rao Chavala

Figure 1: Gedit with Telugu UI

Figure 2: Gedit Help in English

Figure 3: Gedit Help in Telugu

illustrated the steps for localisation using Gedit as an
example, which uses Mallard for online help. Help/User
manual localisation needs to be completed soon after
UI localisation to increase adoption of native language
computing environments by users.

www.LinuxForU.com  |  LINUX For You  |  september 2012  |  45

For U & Me Overview

The features of web based platforms include display
of localisation status and statistics of all the files of a
project, support for translation memories and workflow

management. Glossaries are also supported in some of the
tools. Let us look at Launchpad.net, Pootle for LibreOffice, and
Translatewiki.net as three examples.

Launchpad.net
This is one of the well-known Web-based localisation
platforms. On visiting the site, you will learn that it supports

334 languages and has 64,938 translators in 43 translation
groups. It was started by Canonical in 2005, and released as
open source in 2009. Its translation tool is called Rosetta.
It is much more than a localisation platform, as it supports
code hosting with version control, release management, bug
tracking, mailing lists and wikis. The translation feature
provides a summary view of the status of localisation, and
features suggestions from the vast translation memory. It can be
used for localising operating systems and independent projects.
If a package uses Launchpad.net as the upstream (the root place
for managing the project), users can just do the localisation. If
the upstream is different, then, after completing the localisation,

Web-based
Platforms for Localisation
Previous articles in this series have explored how to localise the application user
interface using Desktop software. This article covers localising using Web-based platforms,
which are easier and convenient, as contributors do not have to worry about file formats,
translation memories, version management systems, etc. These are expressly designed as
Translation Management Systems, allowing multiple team members to collaborate on a project.

For U & Me

Figure 1: Using Launchpad.net to localise WUBI Figure 2: LibreOffice localisation using Pootle

48  | october 2012

Overview For U & Me

Figure 5: A page in Telugu Wikipedia with some strings that are not localised

Figure 6: Displaying message_ids corrresponding to the screen in Figure 5

Figure 7: Translating the specific message of MediaWiki in Translatewiki.net

Figure 4: Message localisation overlay in Translatewiki.net

Figure 3: Localisation of MediaWiki using Translatewiki.net

users have to download what they have localised and submit it
for updating the upstream, separately.

Users have to create a launchpad.net account to
contribute to localisation. It is advisable for users to become
members of the localisation teams to collaborate actively
with other members. All the localisation suggestions
submitted by users are reviewed by the translation
coordinator. The localisation pages offer different options
to filter the messages for improved productivity. Figure 1
shows the Launchpad screenshot for the localisation of the
Windows Ubuntu Installer (WUBI) into Telugu. You can
see the different menus available on a translation page. The
messages are presented as one set, even though they may be
present in different source files.

Pootle
LibreOffice uses Pootle (PO-based Online Translation
/ Localisation Engine tool) for Web-based translation.
Pootle is developed by Translate.org.za, a South Africa-
based non-profit organisation focused on the localisation
of open source software. The Web-based tool leverages
the Translate Toolkit software from the same organisation,
and complements a standalone localisation tool called
Virtaal. Many open source projects are hosted on
Locamotion website (http://pootle.locamotion.org). To
localise a project, an account is needed on the server.
After logging in, languages and projects of interest need
to be configured. If required, the leaders of language
projects need to be contacted to get the necessary
permissions.

Figure 2 shows a sample screenshot of the Telugu
localisation for LibreOffice, hosted on an independent instance
of Pootle by the Document Foundation. The glossary suggestions
are given on the left of the terminology files of the project on the
server. The existing translation is checked for localisation defects,
and the status is shown on the right side. This feature is unique
to Pootle. Localisation text can be updated making use of the
glossary suggestions. There is a provision to submit the update
for review, as well as to mark a localised message as ‘fuzzy’ and
add appropriate comments for review by others. Messages are
organised as per the directory and file structure of the source.

Continued on Page no 55

OCTOber 2012  |  49

Overview For U & Me

part of a process. Typically, I write a shell script. Part of the
process might involve using LibreOffice as mentioned above
to convert the Excel spreadsheet to a CSV. Perhaps I extract
some of the fields from the CSV, use them to interrogate a
database, match the output against some other criteria, and
finally尀̀䨀䠀儀䠀唀䐀圀䠀̀䐀̀儀䠀娀̀☀㘀㤀.

I can send the output CSV to my customer because Excel
accepts CSV as input. I suppose if it were requested, I could
use LibreOffice to convert the .csv to .xls or .xlsx, but I have
never been asked for that.

I find that scripting is much more powerful than many尀̀刀䤀̀
the things one might try to do in Excel. The process can be
made more automatic, which is particularly advantageous if
the process has to be run frequently or regularly. In the latter
case, I can invoke my script from cron.

But do bear in mind that I am talking about tools. It’s
always best to find the most appropriate tool for the task. I
haven’t covered everything, but with this arsenal I can go
a long way.

My previous article (Funny Mythness) discussed ways
in which you could have Linux in the workplace using

The author has spent his days working with computers, mostly
for computer manufacturers or software developers. His early
computer experiences include relics such as punch cards, paper
tape and mag tape. His darkest secret is that he has been paid to
do the sorts of things he would have paid money to be allowed to
do. Just don’t tell any of his employers.

He has used Linux as his personal home desktop since the
family got its first PC in 1996. Back then, when the family shared
the one PC, it was a dual-boot Windows/Slackware set-up. Now
that each member has his/her own computer, Henry somehow
survives in a purely Linux world.

He lives in a suburb of Melbourne, Australia.

By: Henry Grebler

virtual machines. In this article, I’ve suggested ways in
which you can move more towards Linux. I’ve talked
about applications that allow you to inter-operate with
others who are probably restricted to Microsoft’s office
applications; and I’ve discussed tools that allow you to
convert from inconvenient formats to those more amenable
to manipulation using Linux tools.

In the next article, I will look at UNIX tools and how to
unleash their power on files converted with the tools in this
article.

Translatewiki.net
This is a clever project that is in the process of localising
MediaWiki. The Translate MediaWiki extension was started in
2006 by translatewiki.net/wiki/User:Nike and translatewiki.net/
wiki/User:Gangleri, and has become very popular for localising
MediaWiki, its extensions and a host of other software.
MediaWiki itself has been designed with internationalisation
and localisation in mind. So it’s no wonder that it is available
in over 280 languages. Like other Web-based projects, this too
requires a contributor to create an account and select preferred
languages. Then a project can be selected for localisation, and
its various messages can be localised.

Figures 3 and 4 show a typical localisation screenshot.
The suggestions from translation memory are shown, along
with the percentage of matches, and the blue dots following
the number are hyperlinks to the actual translation. The
information about the context of the string is shown next,
followed by the source, and then an edit box to enter the
localised text. This update is saved just like a Wikipedia
page. Additional menu buttons allow easy navigation across
the messages. Another advantage with this tool is that most
updates will go live on the respective language wiki projects
of Wikimedia Foundation in 24 hours.

Most Indian-language MediaWiki projects would have
been already localised. But occasionally, users may come
across pages for which some messages are still in English
(Figure 5). Usually, when a project is partially localised,
try尀䰀儀䨀̀圀刀̀嘀䠀䐀唀䘀䬀̀䤀刀唀̀圀䬀䠀̀嘀匀䠀䘀䰀븀䘀̀倀䠀嘀嘀䐀䨀䠀̀䰀嘀̀圀䰀倀䠀က䘀刀儀嘀堀倀䰀儀䨀̀

[1] Launchpad home page: https://translations.launchpad.net/
[2] 	Pootle features: translate.sourceforge.net/wiki/pootle/features
[3]	 LibreOffice translations using Pootle instance: https://

translations.documentfoundation.org/
[4]	 Translatewiki.net home page: translatewiki.net/wiki/Main_Page

For more information

The author is an independent consultant in the areas of IT, program/
engineering management and open source. He is also the president
of Wikimedia India and the WG Chair for the IEEE-SA project
P1908.1, ‘Virtual keyboard standard for Indic languages’. He can be
reached through his website arjunaraoc.blogspot.in and Twitter ID
@arjunaraoc.

By: Arjuna Rao Chavala

for typical free software. In MediaWiki, it becomes very
simple to locate the message_id by尀̀䐀匀匀䠀儀䜀䰀儀䨀̀됀∀uselang=qqx’
to the URL of the page. In such a case, MediaWiki software
displays message_ids rather than actual English strings
(Figure 6). Then you can use the message_id to search
Translatewiki.net to directly locate the untranslated message
string and translate it (Figure 7).

In this article, we have seen three different Web-based
platforms for localisation, which make it easy for anybody to
contribute to localisation in their preferred languages. So why
not try your hand at it, and share your experience with fellow
readers? I will be happy to devote an article exclusively to
your feedback and questions.

(Continued from Page 49....)

OCTOBER 2012  |  55

Overview For U & Me

Documentation

Documentation

DocumentationLocalisation
Web-Based Software

Documentation

DocumentationDocumentation
Documentation

Software
Documentation

Documentation
Documentation

Localising
Documentation

Documentation

User manuals are more difficult to localise than help files or
the user interface, as they have a lot more text and visuals
to help people learn. While it is possible to copy the English

version and create a local-language version in a simple editor,
making modifications and generating newer versions is not easy. A
specialised computer-based translation aid like OmegaT is a good
tool for this purpose. Other proprietary but free-to-use tools, like the
Google Translator toolkit, can also be used with certain limitations.

OmegaT is a free TM application written in Java, suitable for
professional translators. It supports multiple-file projects, multiple
translation memories, glossaries and fuzzy matching. It supports
more than 30 document formats, including plain text, .po files,
Microsoft, OpenOffice and various mark-up languages. It has a built-
in spell checker, and an interface to Google Translate. It supports
exporting to the various formats used in localisation tools.

Figure 1 shows a sample screenshot of OmegaT. It consists
of three sub-windows; the first, on the left, is called Editor—it
shows the source components, and also allows updating the
corresponding target language translation. The second one, at
top right (the match viewer), shows matches from translation

memory. The third one, at bottom right, is a glossary viewer that
shows the glossary matches.

OmegaT operation is based on projects. For each project, the
user needs to specify the source language, target language, basis
for segmentation (either sentence or paragraph), and the directories
for source files, target files, translation memory and glossary
files. Once these are specified, all the source files are imported
into the project. The user can select a file and do the translation.
The translation memory is updated with each change made to
the translation. To verify the translation, select Create Translated
Documents from the File menu. The target directory will be
updated with the translated files. Those can be processed further if
required and viewed with an appropriate tool.

In order to get a high-quality translation, it is important that
the translation memories generated from the user interface and
help file localisation are used in OmegaT.

Gedit manual translation
The use of this tool can be demonstrated by localising the Gedit
manual from English to Telugu.

The Gedit manual was originally written in HTML. Recently, it is
being rewritten using Mallard, as I explained in a previous article. For
the purpose of this article, let’s use the HTML version. The manual
is available for download from the GNOME documentation website
(http://library.gnome.org/users/gedit/). Download version 2.30.4 to get
the HTML version. To populate the translation memory, the Telugu .po
file can be downloaded from the GNOME localisation site (http://l10n.
gnome.org/vertimus/gedit/master/po/te). With the use of localisation
tools like Virtaal, the translation can be exported to the TMX format
for use in OmegaT. A glossary can be updated by extracting all the
one- and two-word strings from the user interface, using Translate
Toolkit’s utilities and stored in a CSV format, suitable for OmegaT.

Create a new project (Figure 2), with segmentation set
to sentence boundaries; place the relevant source, translation
memory and glossary files in the directories specified in the
project—and the set-up is complete. Now, you can select specific
files from ‘Project files’ (Figure 3) for translation. Each source
segment, and its place-holder for the translation, is shown in the

Localising User Documentation
Previous articles in this series have covered how to localise applications, using desktop
and Web-based software. Most software have user documentation, which needs to be
localised. This article describes how to use OmegaT, a free computer-aided Translation
Memory (TM) tool, to translate documentation.

Localisation

Figure 1: OmegaT for translating documents

NOVEMBER 2012  |  67

For U & Me Overview

Figure 2: OmegaT new project properties

Figure 3: OmegaT project files

Figure 4: Gedit manual English sample page

Figure 5: Gedit manual Telugu sample page

left sub-window (Figure 1). Potential matches are displayed in the
top right window, and glossary matches for words in the source
string are shown in the bottom right. Using keyboard shortcuts
or the mouse, the closest match can be selected and used as the
translation. New target translation can be entered as well. As
OmegaT is a Java utility, it has been noticed that the IBus-based
input method does not work under Ubuntu; X keyboard map can
be enabled to type the target language text in OmegaT.

OmegaT shows the progress statistics of the translation. All
source strings except file names used for hyperlinking need
to be translated. OmegaT does recognise mark-up tags. Tag
verification needs to be done prior to producing the translated
documents, to ensure that each opening tag has a corresponding
closing tag. Figure 4 shows a sample page of the English Gedit
manual and Figure 5 the same in Telugu.

In this article, we have looked at how a free computer TM
tool like OmegaT can be used to translate user documentation.
We will explore aspects of localisation style and other related
issues in future articles.

[1] OmegaT website: https://www.omegat.rog/en/omegat.html

For more information

The author is an independent consultant in the areas of IT, program/
engineering management and open source. He was a cofounder
and first president of Wikimedia India. He initiated the IEEE-SA
standardisation initiative in the software space in India and currently
serves as the WG Chair for the global IEEE-SA project P1908.1,
‘Virtual keyboard standard for Indic languages’. He can be reached
through his website arjunaraoc.blogspot.in and Twitter ID @arjunaraoc.

By: Arjuna Rao Chavala

68  | november 2012

For U & Me Overview

According to Wikipedia, “A style guide or style manual
is a set of standards for the writing and design of
documents, either for general use or for a specific

publication, organisation or field. [It helps] provide uniformity
in style and formatting across multiple documents.”

I first learnt of style guides when my proposal for a
conference research paper was accepted, and I was asked
to send the complete paper as per their style guide. It
consisted primarily of how to number sections, figures and
references; the font sizes for headings of sections and sub-
sections, as well as guidelines on other elements typical in
a scientific publication.

In the context of localisation, we try to make a
software application (or its documentation) developed for
a source language appear equally natural for speakers of a
target language. Languages differ in attributes, usage for
communication, cultural elements, such as date formats,
names of calendar elements and their short forms, and
currency symbols. These need to be localised consistently.
As the source language's elements and practices may have
a different structure from the target language—or even be
entirely absent in it—a style guide helps make the localisation

consistent, even if many people participate in the localisation.
The style guide deals with language and cultural attributes,
terminology and quality assessment aspects.

In the following sections, I will focus on the difficulties
common to Indian language localisers. I encourage localisers to
use the references for more information on specific languages.
I have used the FUEL and Microsoft style guides for Telugu for
illustration and highlight the improvements needed.

Let's look at some language and cultural attributes.

Product and feature names
As product and feature names are trademarked, some style
guides advise against localising them. For one, the Microsoft
Telugu style guide states that product names should not be
localised. Here is an example why:

The Microsoft Feedback Tool is unable to send feedback.

(+) Translation: Microsoft

From the viewpoint of user expectations, this is
inappropriate. By transliterating Microsoft in Telugu as

,we do not violate any trademark rights. Actually, local

Localisation Through Style Guides
This article in the series deals with the topic of style guides for localisation.

Localisation: Ensuring Consistency in

Manual of

56  | december 2012

Overview For U & Me

laws demand that office signboards use the local language in
addition to English. Using transliteration, the user interface
looks more natural and friendly for a typical user

Technical acronyms
Technical acronyms such as OLE (Object Linking and
Embedding), or RAM (Random Access Memory) are
difficult to localise. When they are transliterated in
Indian languages, they may be difficult to read—so for
localising contexts where the user is supposed to have a bit
of technical knowledge (like those who install operating
systems) these acronyms can be left, as is. However, if
they are to be presented to a lay user, then it is better that
they are transliterated as individual characters or as a
pronounceable word.

Culture-specific words
When we translate words like India, we prefer the more
common Indic equivalent of Bharat, or its variations
(variation 2, below) rather than a transliteration of India
(variation 1, below). Similarly, when country names include
the direction names, it is better to translate the direction name
to the local language.

Example: From FUEL Telugu

English Telugu (variation 1) Telugu (variation 2)

India

North America

Keynames
Some keys have specific abbreviations like Ctrl and Alt, and
most style guides suggest they be retained. I would suggest that
as it is essential for everyone, transliterating the key name is
more helpful.

Example: From FUEL Telugu

English

Both Ctrl
keys together
change layout.

Telugu (variation 1) Telugu (variation 2)

 Ctrl

Foreign words ending with halanth

Meter-
Road-

While the first form is correct from a phonetic perspective,
the words are appended with a ‘u’ sound, which makes it

more natural for Telugu speakers. However, if these are
used in a context meant for professionals, the first form
will be more appropriate.

Foreign words with multiple conjuncts for
certain syllables

Software:

The first form is closer to English pronunciation, but is
difficult for the user to understand. It is better to use ZWNJ
(second case) to simplify the conjunct formation and improve
readability, and also make it end with the ‘u’ sound (third
option) to make it natural for Telugu people.

Short-cut keys
Different software use different ways (preceding with
‘_’, or ‘&’, or ‘~’) to highlight short-cut keys. In English,
these keys flow in the usual text. For Indic languages,
as there are several input methods and some keys for
vowel matras need the support of dummy glyphs, it is not
possible to use local language short-cut keys. So, usually,
the English short-cut keys are put at the end of the string,
in parentheses. But these are still difficult to use, as this
requires changing the input method, so I suggest that we
dispense with the short-cut keys, as mouse and touch-
based interaction is becoming the norm. However, it is an
accessibility aid, so may require a longer discussion.

Terminology
There is no unified terminology for most Indian language
localisation needs. FUEL is a project by open source
software teams, and Microsoft has its own terminology. It is
essential for a specialised language centre to build a common
terminology that can be used by all.

Quality assessment
Currently, it requires other team members to spot deviations from
the guidelines. Some localisation tools are able to flag elements
like extra spaces. It would be very useful to have localisation
tools check for conformance to style guides.

[1] FUEL style guides, http://www.fuelproject.org/styleguide/index
[2] 	Microsoft style guides, http://www.microsoft.com/Language/

en-US/StyleGuides.aspx

For more information

The author is chief consultant of Arc Alternatives. He serves as the
WG Chair for IEEE-SA project P1908.1 “Virtual keyboard standard for
Indic languages”. He co-founded and served as the first president of
Wikimedia India. He can be reached through his website http://arcalter.
com or by email to arjunaraoc@arcalter.com.

By: Arjuna Rao Chavala

DECEMBER 2012  |  57

People graduating with a diploma or degree in
translation studies or linguistics courses join the LSPs.
Some people who know more than one language work as
freelancers. However, as localisation is a specialised area,
there is a need for training on the theory and the tools.
In the last decade, pre-conference tutorials as part of the
annual Localisation World Conference, custom training
from experienced professionals, and tool vendors offered
the main training opportunities. A few universities and
institutions have started offering offline and online courses
and certifications in recent years. More details on such
offerings are given below.

USA
In the USA, a Localisation Certification Program was
launched in 2006 by California State University in partnership

Common Sense Advisory is an independent market
research company serving the worldwide translation,
localisation, interpreting, globalisation and

internationalisation marketplace. Its estimate for outsourced
language services in 2011 was US$ 29.885 billion. Europe
(49.38 per cent) was the largest region, followed by North
America (34.85 per cent) and Asia (12.88 per cent). There
were around 26,104 language service providers (LSPs) with
two or more employees. More than 95 per cent of LSPs have
small-scale operations employing just a few people. The
localisation market is projected to reach US$ 33.523 billion
by the end of 2012, which means an annual growth rate of
12.17 per cent. Unfortunately, there are very few details
about the Indian market in the open domain, though it is
estimated at about US$ 0.5 billion in 2010, based on the IT
enabled services market share.

Localisation: The Status
of Education and Training

OPEN SOURCE FOR YOU  | JANUARY 2013  |  69

For U & MeOverview

This article surveys the education and training opportunities in language services
available in India and across the world.

with professional associations. A new programme called
‘Localisation Project Management Certification’ for global
website projects is also being offered.

Europe
In 2010, the Institute of Localisation Professionals
headquartered in Dublin, Ireland launched a Certified
Localisation Professional (CLP) programme comprising
online and offline modules, and has trained a few hundred
people. The programme is currently under revision. The
Localisation Research Centre, part of the University
of Limerick (Ireland) is offering a one-year M.Sc in
Multilingual Computing and Localisation from the year
2011, in the distance education mode.

India
Several universities offer diploma and PG diploma courses
in translation studies and linguistics. Students passing these
courses found employment with government organisations
and the media and served in translating administrative texts
or literature/news. With the onset of liberalisation during the
1990s, the need for language professionals has grown rapidly,
with India becoming the hotbed of IT outsourcing. During the
last decade, the availability of computer operating systems
and applications in Indian languages, and the rapid growth in
the use of mobile phones and the Internet is further driving the
market for language services. Most of you would have noticed
the availability of Indian language user interfaces in ATMs,
increased language options in Interactive Voice Response
Systems and customer support centres of satellite television
companies, besides the availability of English movies and
television channels in Indian languages.

‘Multilingual’ magazine's December 2011 issue focused
on opportunities in India. One reason mentioned for the small
market for localisation is that the population that can afford to
buy goods and services has a good knowledge of English, and
would prefer to read material in English. However, the active
involvement of the government through its Indian language
initiative (Technology Development in Indian Languages);
the focus of Google, Microsoft and other companies in their
quest to reach a majority of the population; as well as the
increased focus of the media and entertainment industries to
serve Indians in their native languages, is ensuring that growth
prospects in this domain are very attractive. Recent news
reports mention the availability of enterprise applications in
Hindi and other languages targeting the SME market in India.

The Indian government has started several initiatives to
promote translation. The Institute of Translation Studies was set
up in 2002 to promote offline and online education. The National
Translation Mission Project was launched in 2008, with a target
of translating knowledge texts into various Indian languages, and
developing resources for improving translation in the country. It
has published bilingual basic dictionaries of the most frequent
words and phrases in several Indian languages. Punjab University

started a Centre for Language Innovation in May 2012, with the
objective of education and research in languages, to promote
skills development in the related areas.

All the above initiatives were focused on translation.
It is heartening to note that the Department of Electronics
and Information Technology Working Group has proposed
to set up a National Localisation Research & Resource
Centre (NLRRC) during the 12th five-year Plan (2012-17).
The objective is to spur localisation activities in India,
with a focus on e-content in Indian languages, localisation
of IT and non-IT products, localisation tools and
platforms, standards development, as well as to promote
entrepreneurship, incubation and Ph.D programmes.

Another important development is the launch of a
professional association called the Indian Translators 3
Association in 2006, which is working with the government
and others to organise the industry. The first international
conference on the ‘Role of Translation in Nation Building,
Nationalism and Supra Nationalism’ was held in New
Delhi in 2010. The conference has become an annual event,
and the association is also taking steps to introduce more
professionalism into the industry.

In this brief article, we have reviewed the status of
education and training in the broader area of language
services. As can be seen, there is lot of growth potential in
the language services market, and enterprising organisations
and individuals can tap into this opportunity.

[1] 	The Language Services Market 2012, Common Sense
Advisory (Extract at http://www.commonsenseadvisory.com/
Portals/0/downloads/120531_QT_Top_100_LSPs.pdf

[2] 	Localisation World Conference. http://www.localizationworld.
com/

[3] 	Localisation Certification & Localisation Project Management
Certification programme. http://rce.csuchico.edu/localize/

[4] 	The Institute of Localisation Professionals. http://www.	
tilponline.net/

[5] 	Multilingual magazine. December 2011 special issue on India.
http://multilingual.com/

[6] 	Report of the Working Group on Information Technology
Sector, Twelfth Five Year Plan (2012–17). http://
planningcommission.nic.in/aboutus/committee/wrkgrp12/cit/
wgrep_dit.pdf

[7] 	Indian Translators Association website http://www.itaindia.org/

References

By: Arjuna Rao Chavala

The author is chief consultant of Arc Alternatives, which
works to catalyse the transformation of IT/engineering
enterprises with a focus in the areas of IT, programme/
engineering management and open source. He serves as
the WG Chair for the IEEE-SA project P1908.1, ‘Virtual
keyboard standard for Indic languages’. He co-founded and
served as the first president of Wikimedia India. He can be
reached through his website http://arcalter.com or by email
to arjunaraoc@arcalter.com.

70  |  jANUARY 2013  |  OPEN SOURCE FOR YOU

For U & Me Overview

the traditional keyboard-and-screen mode of access, and limited
support for personalisation in terms of language variations. The
research challenge is to leverage various core technologies and
frameworks to be able to instantly translate content and localise
applications, duly considering the profile of the user. The
next few paragraphs explore the status of localisation and the
challenges faced in dealing with Indian languages.

a) Volume: The quantity of information on the Web is
exploding due to its popularity as a medium of communication
and interaction, and also the popularity of Web 2.0 platforms
such as Twitter, Facebook, Google+, etc. The industry has
tried to address this by defining and improving the process for
localisation in corporate environments, as well as leveraging the
crowd sourcing opportunity in social media environments.

The core component of localisation is the translation
technology. For a long time, the route explored was rule-
based translation research consisting of parsing of the
source text, and using dictionaries and grammar rules to
produce the translation. Subsequently, Statistical Machine
Translation(SMT), based on training of the algorithms, with
paired human-translated texts of source language text and
destination language texts has become popular. Websites,
translated at the click of a button for the dominant languages,
have become feasible—though the quality of the translation
could be inadequate for professional requirements.

Ten years back, there were very few people who
knew how to use Indian languages on the desktop.
Now, we not only have millions of people who read

content on the Internet in their native languages on desktops
and smartphones, but also thousands of people who edit
and contribute content. This has been possible due to the
availability of computing devices with Indian language
support, their falling prices, as well as the ability to access the
Internet through various communication mediums.

We have seen a few early signs of the outcome of
the research of the last decade, in the form of machine
translation support for the Web. While five Indian languages
are supported by Google's machine translation tools, the
quality is still not up to the mark due to the complex nature
of languages. Speech and touch interfaces have made their
appearance, particularly on smartphones. The speech interface
is now supported in limited domains, such as searching
through the contacts list, or searching the Internet. However,
Indian-accented English support needs to be improved.

As per the framework of the Centre for Next Generation
Localisation, a specialised centre of excellence in Ireland, the
challenges for localisation are volume, access (interaction
mode) and personalisation. These three dimensions represent
three axes, with most of the localisation work focused on high-
volume content in corporate environments, with support for

The Status of Research in Localisation

82  |  february 2013  |  OPEN SOURCE FOR YOU

For U & Me Overview

In this 10th and concluding article in the series on localisation, the author take a closer look at
the challenges for Indian language localisation and the current status of research in the field.

Localisers can use the automated translation suggestions from
SMT, when there is no proper match in translation memory to
improve the translation. The resulting improved translation can be
used to train the statistical machine translation system.

b) Access (interaction mode): The traditional access
(interaction mode) method while working with computers
is through a screen and a physical keyboard. We have seen
the emergence of the touchscreen, which allows for virtual
keyboards and alternate methods of input like writing on the
screen or composing the input by rapid selection of letters from
the virtual keyboard by tracing a finger from letter to letter. In
addition, with the popularity of smartphones, voice input and
output is becoming another key interaction mode.

Due to the small screen size of phones, there is potential for
errors in inputting text. Dictionary-based approaches that prompt
the user to pick a word from a limited choice have been helpful.
Other technologies that have reached a level of maturity in
English, but need further development for Indian languages, are
spell-checkers and grammar checkers.

Speech technologies for text-to-speech and speech-to-text are
critical for the voice mode of interaction. This works fine in a limited
context like search or interactive customer support in English. The
support for Indian languages is limited in text-to-speech, and barely
exists for speech-to-text. And speaker independence and operating in
noisy environments are global challenges.

Character recognition technology, which was developed
to rapidly process huge volumes of data from physical books,
supported by image processing and pattern recognition
techniques, has matured for English, whereas current offerings
for Indian languages are not adequate.

Handwriting recognition is another area of active research, as
it allows for more natural user interfaces. Here again, the complex
nature of most Indian scripts makes this a challenging research area.

c) Personalisation: Traditionally, localisation is coarse-
grained in the sense of its focus on language and not much
on its variation across countries and regions within a country.
Personalisation refers to making information available as per
the personal and information requirements of the user in a given
context. This makes such information more valuable. If the user
interface and other content can be made specific to a language
as spoken in a particular region, the quality of localisation will
become much better. This requires several resources, such as
dictionaries at the dialect level and also a way to transform
sentences from a standard language into its dialect forms.

Localisation tools
We have looked at the advances in tools from the basic text-editor
kind of models to Web-based platforms in the previous articles.
The tools have live interfaces to Translation Memory repositories,
and support various project management tasks such as planning,
tracking and work flow, as well as reporting mechanisms. Support
for XML interoperability standards like XLIFF, TMX and TBX
is also available. Several commercial business models based on
the purchase and exchange of language resources have become

common. Tools that allow Web localisation to be done directly on
the displayed web page have appeared (e.g., Mozilla Pontoon).
Further improvements to tools to manage the complexities of
localisation as per user constraints, while leveraging Web services
and crowd sourcing efficiently, is an active research area.

Future of Indian Language Technology Research
The Indian government's Department of Electronics and Information
Technology (DeiTY) has an initiative called 'Technology
Development in Indian languages' (TDIL). The objective is to
popularise the support for Indian languages on computing platforms.
It has been promoting work on machine translation systems—from
English to Indian languages and from one Indian language to another,
cross-lingual information access, and Optical Character Recognition
and handwriting —through a consortium of academic institutions and
research organisations for than a decade. Demo versions of products,
along with relevant fonts and software for each language, have been
developed and were made available through free physical CDs
seven years back. The same are now available for download from
its data centre website. However, all the offerings are only meant for
non-commercial use. Redhat, Google, Microsoft and various small
and medium enterprises have been pioneering their own initiatives to
popularise Indic computing. Free and Open source groups have also
worked tirelessly to improve support for Indian languages.
The involvement of all language computing stakeholders on a
common platform in defining the strategic goals and assessing the
outcomes, as well as releasing the results of basic research, tools
and language related databases under unrestricted licenses will be a
great step for rapid progress.

End note
It has been a great opportunity for me to introduce localisation
and explore its various aspects, over the past year, through
this magazine. I express my thanks to the OSFY editors and
management for their support. I acknowledge and thank all the
people and organisations who persevere passionately to make
Indian languages on par with English in computing arena.

[1] 	Next Generation Localisation, Josef van Genabith,
Localisation Focus, Vol. 8, Issue 1, http://www.localisation.ie/
resources/locfocus/vol8issue1.htm

[2] 	Pontoon Introduction-Zbigniew Braniecki
http://diary.braniecki.net/2010/04/19/pontoon-introduction/

[3] 	TDIL website http://tdil.mit.gov.in/

References

The author is chief consultant of Arc Alternatives, which works
to catalyse transformation of IT/engineering enterprises with
a focus in the areas of IT, program/engineering management
and open source. He co-founded Wikimedia India and served
as its first president. He also serves as the WG Chair for the
IEEE-SA project P1908.1–-‘Virtual keyboard standard for Indic
languages’. He can be reached through his website http://
arcalter.com or by email to arjunaraoc@arcalter.com.

By: Arjuna Rao Chavala

OPEN SOURCE FOR YOU  | FEBRUARY 2013  |  83

For U & MeOverview

Globalisation Process (From Wikimedia Commons Author:Iat_ vicky)

 Localisation
Arjuna Rao Chavala

Chief Consultant, Arc Alternatives
arjunaraoc@arcalter.com

Feedback from Readers:

Uday Mittal, LFY/OSFY Reader
I read your article named 'Localisation An Introduction' in Linux For You April
2012 and I found it very interesting. It was through this article that I came to know
about Indian Linux Flavors like Rangoli and the importance of Localisation. I
develop small applications and websites as hobby and would like to read the entire
series of your articles in forthcoming issues of Linux For You.

Aditya Vinnakota, LFY/OSFY Reader
My name is Aditya vinnakota,working as web developer (opensourse). I read your
localisation article in august month now I found (some articles in this blog). That
was really really very nice and useful to me very effectively. I am very happy to
meet you through this blog . Thanks for your knowledge share

mailto:arjunaraoc@arcalter.com

