

STANDARD

UAS Datalink Local Set

MISB ST 0601.8

23 October 2014

1 Scope

MISB Standard 0601 details the Unmanned Air System (UAS) Datalink Local Set (LS) for UAS platforms. The UAS Datalink LS is an extensible SMPTE (Society of Motion Picture Television Engineers) Key-Length-Value (KLV) metadata set designed for transmission through a wireless communications link (Datalink).

This Standard provides direction and requirements for the creation of a SMPTE ST 336 compliant Local Set (LS) for a reliable, bandwidth-efficient exchange of metadata among digital Motion Imagery systems. This Standard also provides a mapping to Predator Exploitation Support Data (ESD) for continued support of existing metadata systems.

The UAS Local Set is intended to be produced locally within a UAS airborne platform and included in an MPEG-2 Transport Stream (or equivalent transport mechanism). The MPEG-2 Transport Stream (or equivalent) also contains compressed Motion Imagery from sensors, such as Electro-Optical / Infrared (EO/IR). Synchronization between the metadata and the appropriate Motion Imagery is highly desired and is the responsibility of the system designer. The MPEG-2 Transport Stream (or equivalent) embedded with a UAS LS is transmitted over a medium bandwidth (e.g. 1 to 5Mb/s) wireless Datalink for dissemination.

The scope of this document is to provide a framework for an extensible bandwidth-efficient Local Set that enhances sensor-captured imagery with relevant metadata. This Standard also provides a mapping between UAS Datalink Local Set items, ESD items, and Universal Set (US) items defined in the latest SMPTE KLV dictionary (RP 210) as well as in the MISB-managed ST 0807 keyspace.

2 References

2.1 Normative References

The following references and the references contained therein are normative.

- [1] SMPTE ST 336:2007, Data Encoding Protocol Using Key-Length-Value
- [2] MISB EG 0104.5, Predator UAV Basic Universal Metadata Set, Dec 2006
- [3] SMPTE RP 210v13:2012, Metadata Element Dictionary
- [4] MISB ST 0603.2 Common Time Reference for Digital Motion Imagery Using Coordinated Universal Time (UTC), Feb 2014
- [5] MISB ST 0604.3 Time Stamping Compressed Motion Imagery, Feb 2014

- [6] MISB ST 1402 MPEG-2 Transport of Compressed Motion Imagery and Metadata, Feb 2014
- [7] MISB ST 0605.4 Time Stamping and Metadata Transport in High Definition Uncompressed Motion Imagery, Feb 2014
- [8] MISB ST 0107.2 Bit and Byte Order for Metadata in Motion Imagery Files and Streams, Feb 2014
- [9] MISB ST 0807.13 MISB KLV Metadata Dictionary, Feb 2014
- [10] MISB ST 0806.4 Remote Video Terminal Local set, Feb 2014
- [11] MISB ST 0102.10 Security Metadata Universal and Local Sets for Digital Motion Imagery, Oct 2013
- [12] MISB ST 0902.3 Motion Imagery Sensor Minimum Metadata Set, Feb 2014
- [13] MISB RP 0903 Video Moving Target Indicator Local Set, Sep 2009
- [14] ASI-00209 Rev D, Exploitation Support Data (ESD) External Interface Control Document, 04 Dec, 2002
- [15] IEEE 1003.1-2013, Information Technology Portable Operating System Interface (POSIX) Base Specifications, Issue 7
- [16] ISO/IEC 646:1991, Information Technology ISO 7-bit coded Character Set for Information Interchange
- [17] MIL-STD-2500C, National Imagery Transmission Format Version 2.1, May 2006
- [18] MISB ST 1204.1 Motion Imagery Identification System (MIIS) Core Identifier, Oct 2013
- [19] MISB ST 1206 SAR Motion Imagery Metadata, Feb 2014

2.2 Informative References

- [20] MISB ST 0806.4 Remote Video Terminal Local Set. Feb 2014
- [21] MISB ST 0801.5 Photogrammetry Metadata Set for Digital Motion Imagery, Feb 2014

3 Acronyms

BER	Basic Encoding Rules
ESD	Exploitation Support Data
KLV	Key Length Value

LS Local Set

MI Motion Imagery
OID Object IDentifer
US Universal Set

4 Revision History

Revision	Date		Summary of Changes					
ST 0601.8	6/18/2014	•	EARS requirements format and other general formatting					
		•	Changed LDS to LS and UDS to US					

5 Introduction

A SMPTE ST 336 [1] Universal Set (US) provides access to a range of KLV formatted metadata items. Transmitting the 16-byte key, basic encoding rules (BER) formatted length, and data value is appropriate for applications where bandwidth isn't a concern. However, transmitting the 16-byte universal key consumes precious bandwidth in bandwidth-challenged environments.

The Motion Imagery Standards Board (MISB) Engineering Guideline MISB EG 0104.5 [2] entitled "Predator UAV Basic Universal Metadata Set" shows a translation between basic ESD and Universal Set (US) metadata items that exist in the most current version of the SMPTE KLV dictionary. The US items in EG 0104.5 are more appropriate for higher bandwidth interfaces (e.g. > 10Mb/s), such as dissemination, whereas this document targets low to medium bandwidth interfaces (e.g. 1 to 5Mb/s).

UAS airborne platforms typically use a wireless communications channel that allots a limited amount of bandwidth for metadata. Because of the bandwidth disadvantages in using a Universal Set, it is more desirable to use a Local Set construction for transmission over a UAS Datalink. As discussed in SMPTE ST 336, a Local Set can use a 1, 2 or 4-byte tag with a 1, 2, 4-byte, or BER (Basic Encoding Rules) encoded length. The UAS Local Set described in this document uses BER-encoded lengths and BER-OID encoded tags to minimize bandwidth requirements, while still allowing the LS ample room for growth.

This Standard identifies a way to encode metadata into a standard KLV Local Set. This standardized method is intended to be extensible to include future relevant metadata with mappings between new LS, US, and ESD (Exploitation Support Data) metadata items (where appropriate). When a new metadata LS item is added or required, the item will be added to the to the proper metadata dictionary (public or private), if the metadata item does not already exist.

The method described in this Standard also provides a mapping between Local Set items and currently implemented Universal Set items defined in the SMPTE RP 210 [3] KLV dictionary.

5.1 Local Set Changes and Updates

This document defines the UAS Datalink Metadata Local Set and is under configuration management.

Requirement							
ST 0601.8-01	Any changes to MISB ST 0601 shall be accompanied by a document revision and						
	date change and coordinated with the managing organization.						
ST 0601.8-02	Applications that implement MISB ST 0601 shall allow for metadata items in the						
	UAS Local Set that are unknown so that they are forward compatible with future						
	versions of the interface.						

6 UAS Datalink Local Set - Requirements

These requirements for the UAS Datalink Local Set (LS) are outlined here and used as references from within this text.

6.1 KLV Rules

	Requirement
ST 0601.8-03	All UAS Datalink metadata shall be expressed in accordance with MISB ST 0107[8].
ST 0601.8-04	All UAS Datalink metadata shall be formatted in compliance with SMPTE ST 336
	[1].
ST 0601.8-05	Implementations of MISB ST 0601 shall parse unknown but properly formatted
	metadata UAS Local Set packets so as to not impact the reading of known Tags
	within the same instance.
ST 0601.8-06	
	encoded using the fewest possible bytes in accordance with SMPTE ST 336 [1].
ST 0601.8-07	All instances of item length fields within a UAS Datalink LS packet shall be BER
	Short or BER Long encoded using the fewest possible bytes in accordance with
	SMPTE ST 336 [1].
ST 0601.8-08	All instances of a UAS Datalink LS where the computed checksum is not identical to
	the included checksum shall be discarded.

6.2 Mandatory UAS Datalink LS items

Requirement							
ST 0601.8-09	All instances of a UAS Datalink LS shall contain as their first element Tag 2, UNIX						
	Time Stamp – Microseconds.						
ST 0601.8-10	The value assigned to the UNIX Time Stamp - Microseconds item (Tag 2) shall represent the time of birth of the metadata of all the elements contained in that instance of the UAS Datalink LS.						
ST 0601.8-11	All instances of the UAS Datalink LS shall contain as the final element Tag 1,						
	(Checksum).						
ST 0601.8-12	All instances of the UAS Datalink LS shall contain Tag 65, UAS LS Version Number.						

6.3 Metadata Usage

	Requirement								
ST 0601.8-13	Excepting the requirements for Tag 2 at the start and Tag 1 at the end of a UAS								
	Datalink LS any instance of the UAS LS, an instance of an UAS LS containing any								
	number of properly formatted, unique Tags in any order shall be valid.								
ST 0601.8-14	The usage of all Tags within the UAS Datalink LS shall be consistent with the								
	descriptions and clarifications contained within MISB ST 0601.								
ST 0601.8-15	UAS Datalink LS elements that have incomplete descriptions (i.e.: "TBD") shall be								
	informative rather than normative.								
ST 0601.8-16	UAS Datalink LS decoding systems that understand the full-range representation of								
	certain metadata items shall use the full-range representation and ignore the								

	range-restricted representation when both exist in the same UAS Datalink LS packet.
ST 0601.8-17	UAS Datalink LS decoding systems that understand the Height Above Ellipsoid (HAE) representation of certain metadata items shall use the HAE representation
	and ignore the Mean Sea Level (MSL) representation when both exist in the same UAS Datalink LS packet.

6.4 LS Universal Keys

Requirement										
ST 0601.8-18	The UAS Local Set 16-byte Universal Key shall be 06 0E 2B 34 - 02 0B 01 01 – 0E									
	01 03 01 - 01 00 00 00 (CRC 56773)									

UAS Datalink LS Universal Key history

Date Released: May 2006

Description: Defined in MISB ST 0807 [9]

A key history is provided below as a way to track the keys used in engineering and development. Note that the keys listed below are informative only.

DO NOT use the below historical universal keys in any future development.

Key: 06 0E 2B 34 - 01 01 01 01 - 0F 00 00 00 - 00 00 00

Date Released: November 2005

Description: Experimental node key used in software development efforts at General Atomics prior to the assignment of a defined key.

Key: 06 0E 2B 34 - 02 03 01 01 - 01 79 01 01 - 01 xx xx xx

Date Released: October 25, 2005

Description: This key was released as a placeholder within early versions this document. Much development has been based around draft versions of this document which has used this key in some software implementations.

Requirement									
ST 0601.8-19	Historical 16-byte Universal Keys shall not be used in future developments.								

6.4.1 SMPTE Universal Key Version Number

Depreciated in ST 0601.6.

6.5 LS Packet Structure

Figure 6-1 shows the general format of how the LS is configured. It is required that each LS packet contain a Precision Timestamp (defined in MISB ST 0603 [4]), which is Coordinated

Universal Time (UTC) - based that represents the time of birth of the metadata within the LS packet to conform with the requirements in Section 6.2. Time stamping is further discussed in Section 6.7. A checksum metadata item is also required to be included in each LS packet and needs to conform with the requirements in Section 6.2. Checksums are discussed in Section 6.8.

Figure 6-1: Example of a UAV Local Set Packet

Any combination of metadata items can be included in a UAS Local Set packet. Also, the items within the UAV LS can be arranged in any order. However, the timestamp is always positioned at the beginning of an LS packet, and the checksum always appears as the last metadata item, which aids algorithms surrounding its computation and creation (see requirements in Section 6.2).

6.5.1 Bit and Byte Ordering

All metadata is represented using big-endian (Most Significant Byte (MSB) first) encoding, and Bytes using big-endian bit encoding (most significant bit (msb) first) (see requirements in Section 6.1).

6.5.2 Tag and Length Field Encoding

The UAS LS item tag and length fields are encoded using basic encoding rules (BER) for either short or long form encoding of octets (see requirements in Section 6.1). This length encoding method provides the greatest level of flexibility for variable length data contained within a KLV packet.

See SMPTE ST 336 for further details.

6.5.2.1 BER Short Form Length Encoding Example

For UAS LS packets and data elements shorter than 128 bytes, the length field is encoded using the BER short form. Length field using the short form are represented using a single byte (8 bits). The most significant bit in this byte signals that the long form is being used. The last seven bits depict the number of bytes that follow the BER encoded length. An example LS packet using a short form encoded length is shown in Figure 6-2:

Figure 6-2: Example Short Form Length Encoding

Although this example depicts the length field of the entire LS packet, short form BER encoding also applies to the individual item lengths within the LS packet.

6.5.2.2 BER Long Form Length Encoding

For UAS LS packets and data elements longer than 127 bytes, the length field is encoded using the BER long form. The long form encodes length field using multiple bytes. The first byte indicates long form encoding as well as the number of subsequent bytes that represent the length. The bytes that follow the leading byte are the encoding of an unsigned binary integer equal to the number of bytes in the packet. An example LS packet using a long form encoded length is shown in Figure 6-3:

Figure 6-3: Example Long Form Length Encoding

Although this example depicts long form BER encoding on the length field of the entire LS packet, long form BER encoding also applies to the individual item lengths within the LS packet.

6.5.2.3 BER-OID Encoding for Tags

Also known as "primitive BER", or "ASN.1 OID BER", BER-OID encoding of tags differs from short and long form BER encoding used for KLV lengths as described in Sections 6.5.2.1 and 6.5.2.2.

Local KLV sets employing the use of BER-OID encoded tags can represent an almost limitless number of metadata items. BER-OID binary encoding allows the size of a tag space to increase through the inclusion of additional bytes when the tag number passes certain threshold.

For instance, one BER-OID byte (or octet) can represent up to 127 different metadata items. Two bytes can represent 16,383 items. Generalizing for any number of bytes "N" used as a BER-OID tag, the number of tags that can be represented is $2^{7 \cdot N} - 1$.

When using BER-OID encoding for tags, each tag is represented as a series of one or more bytes. Bit 8 (msb) of each byte indicates whether it is the last in the series: bit 8 of the last byte (LSB) is zero, while bit 8 of each preceding byte (MSB's) is one. Bits 7 to 1 of the bytes in the series collectively encode the metadata tag.

Conceptually, these groups of bits are concatenated to form an unsigned binary number whose most significant bit is bit 7 of the first bite, and whose lease significant bit is bit 1 of the last octet.

A BER-OID encoded tag must use the fewest bytes possible. Equivalently, the leading byte(s) of the BER-OID tag must not have the value of 0x80.

BER-OID encoding examples for one, two, and three-byte encodings are shown in Figure 6-4, Figure 6-5 and Figure 6-6 respectively.

Figure 6-4: BER-OID Tag Encoding Using One Byte

Note that only 127 different tags are encoded using a single byte. Decoding is the reverse of encoding. This is the only tag encoding currently encountered in the UAS LS.

Figure 6-5: BER-OID Tag Encoding Using Two Bytes

Note that logical tags 128 through 16,383 are encoded using two bytes. Decoding is the reverse of encoding.

Figure 6-6: BER-OID Tag Encoding Using Three Bytes

Note that logical tags 16,384 through 2,097,151 are encoded using three bytes. Decoding is the reverse of encoding.

Although not currently in use, it is envisioned that a maximum of 2-bytes will be used to encode BER-OID tags within the UAS LS in future revisions.

6.5.3 Nesting Local Sets within the UAS Datalink LS

To provide a method to re-use commonly used metadata field from the UAS LS (platform location, and sensor pointing angles) while providing greater flexibility to system implementers, other Local Sets (with tag defined in the UAS LS) may be nested within the UAS LS.

A nested Local Set is treated the same as any other standalone metadata item defined within the UAS LS where the Tag is defined by this document, and the length field is determined by the size of the value portion. The nested set, however, typically has an increased length compared to other UAS LS items, and the value portion conforms to the defining Local Set document. An illustrative example packet showing the RVT LS (MISB ST 0806 [20]) nested within the UAS LS is shown in Figure 6-7.

Figure 6-7: Nested Packet Example

6.6 Data Collection and Dissemination – Informative

Within the air vehicle, metadata is collected, processed, and then distributed by the flight computer (or equivalent) through the most appropriate interface (SMPTE Serial Digital Interface (SDI), RS-422, 1553, Ethernet, Firewire, etc.). See Figure 6-8.

Figure 6-8: System Architecture

Sensors and other metadata sources pass metadata to the flight computer.

The flight computer (or equivalent) places a timestamp in the UAS LS packet prior to passing it to the Video Encoder / Packet Multiplexer. See Section 6.7 for more information about using timestamps in the LS metadata packet.

Although the means for packaging Motion Imagery with metadata may be implementation specific, the following provides a general idaea of the process. The flight computer merges all appropriate metadata items along with a timestamp and checksum into a LS packet and sends the data to a Motion Imagery encoder/packet multiplexer, which produces a unified data stream for off-platfrom transmission. Once passed through the communications link, a remote client can decode and process the Motion Imagery and metadata contained within the stream. Users can then display and/or distribute the Motion Imagery and metadata as appropriate.

6.7 Time Stamping

Every LS KLV packet is required to include a Precision Time Stamp as defined in MISB ST 0603 as a way to correspond the metadata with a standardized time reference. The Precision Time Stamp is based on UTC time, which provides a means to associate metadata with Motion Imagery frames, and for reviewing time-critical events at a later date. This section describes how to include the mandatory timestamp within a UAS Local Set packet according to the requiements in Section 6.2

Metadata sources and the flight computer (or equivalent) are coordinated to operate on the same standard time, which is typically GPS derived. The metadata source provides a timestamp for inclusion in a LS packet and the timestamp assists the accuracy of synchronizing each frame to its corresponding metadata set.

The timestamp (Tag 2) is an 8 byte unsigned integer that represents the number of microseconds that have elapsed since midnight (00:00:00), January 1, 1970. This date is known as the Unix epoch (POSIX Microseconds) and is discussed in the IEEE POSIX standard IEEE 1003.1.

When receiving packets of ST 0601 metadata, the time value represents the time of birth of all metadata items contained within the UAS LS packet in accordance with the reqirements in Section 6.2. When generating UAS LS metadata packets, the most current metadata samples since the last metadata packet (with timestamp) are intended to be used and assigned the current time.

Generation of metadata packets introduces a situation where the time of birth timestamp may not directly correspond to when a metadata value was actually sampled. In this case, the maximum timestamp error encountered is the difference in time between the current metadata packet, and the packet which immediately precedes it.

Systems producing or accepting ST 0601 metadata streams are allowed to adjust metadata repetition rates to meet timestamp precision needs.

6.7.1 Packet Timestamp

An LS Packet Timestamp is inserted at the beginning of the value portion of a UAS LS packet.

The UTC timestamp represented by Tag 2 (UNIX Timestamp) applies to all metadata in the LS packet. This timestamp corresponds to the time of birth of all the data within the LS packet. This time can be used to associate the metadata with a particular video frame and be displayed or monitored appropriately.

An example LS packet containing a timestamp is show in Figure 6-9:

Figure 6-9: Packet Timestamp Example

6.8 Error Detection

To help prevent erroneous metadata from being presented with the Motion Imagery, it is required that a 16-bit checksum is included in every UAS Local Set packet as the last item (see requirements in Section 6.2). The checksum is a running 16-bit sum through the entire LS packet starting with the 16 byte Local Set key and ending with summing the length field of the checksum data item.

Figure 6-10 shows the data range that the checksum is performed over:

Figure 6-10: Checksum Computation Range

An example algorithm for calculating the checksum is shown below:

If the calculated checksum of the received LS packet does not match the checksum stored in the packet, the user must discard this packet as being invalid (see requirements in Section 6.1). The

lost LS packet is of little concern since another packet is available within reasonable proximity (in both data and time) to this lost packet.

6.9 Motion Imagery/Metadata Synchronization

Synchronization or time-alignment of a Motion Imagery frame with metadata is highly desired and is the responsibility of the system designer. The Precision Time Stamp, referenced in this document, is based on UTC and the POSIX Epoch; requirements for its use is outlined in MISB ST 0603 [4]. Requirements for time stamping compressed Motion Imagery with a Precision Time Stamp are outlined in MISB ST 0604 [5]. Methods and requirements for synchronizing compressed Motion Imagery and metadata within an MPEG-2 Transport Stream are discussed in MISB ST 1402 [6]. Requirements for time stamping and metadata carriage in high definition uncompressed Motion Imagery are outlined in MISB ST 0605 [7].

Many considerations need to be weighed in specifying the intent in synchronizing Motion Imagery frames with metadata. These include: sufficient bandwidth to accommodate the metadata without limiting the Motion Imagery; required update rates of metadata; requirements for presentation of synchronized Motion Imagery with metadata at a client receiver; receiver decoder buffer (delay) requirements. Different applications will have differing requirements on how tight the synchronization needs to be, and whether sufficient information is available to guarantee the relationship between the Motion Imagery and the metadata. While metrics for the timing of Motion Imagery and metadata may be application specific, the best advice at this time is to ensure that the Precision Time Stamp when inserted into a Motion Imagery frame and into a metadata local set is as accurate to the point of collection s possible for both.

7 UAS Local Set Tables

This section defines the content of the UAS Local set as well as translation between LS & ESD, and LS and US data types.

For guidance on which items to include in ST 0601 packets, refer to ST 0902 (Motion Imagery Sensor Minimum Metadata Set) for a listing of a minimum set of UAS LS metadata items.

7.1 UAS DataLink Local Set Items

Each UAS Local Set item is assigned an integer value for its tag, a descriptive name, and also has fields indicating the units, range, format, and length of the data item. More detailed information about the data item is included in the Notes column.

Notes:

- The columns labeled "Mapped US", "Units", "Format", "Len" (for length) and "Notes" all apply to the Local Set ONLY and not ESD or US data types.
- "ESD Name" is the name assigned to an ESD metadata item labeled as a two-character digraph in the "ESD" column.
- An "x" within a field below indicates that no data is available.

- The "Mapped US" column is the Universall set metadata key reserved to represent the length and data format specified by the referring LS metadata item. The key is the only parameter which differs between US and tag of the LS item. Note that LS items which state "Use EG 0104 US Key" may require conversion between LS and US data types prior to representing an LS item as a US item.
- The "US" column is an existing metadata key which the UAS LS is mapped to in some applications (i.e.: EG 0104). Note that the LS and EG 0104 data formats often differ between one another and a US key could not be used to represent the data in an LS item without proper conversion first.

Table 1: UAS Datalink Metadata Set

Checksum	TAG	LS Name	Mapped US	ESD	ESD Name	US	US Name	Units	Format	Len	Notes
2 UNIX Time Stamp Use EG0104 US Key US US US US US US US U											
2	'	Checksum		^	*	*	^	None	unitro	2	
Partform Tail One 20 one one of CRC 561321 September O											•
CRC 56132											
2 UNIX Time Stamp Use ECO104 Variable											
2			(Cite 30132)								
Section Sect	2	UNIX Time Stamp	Use EG0104	х	х	06 0E 2B 34	User Defined	Microseco	uint64	8	
Mission ID		•				01 01 01 03	Time Stamp –	nds			represented in the number of
A Mission ID 06 0E 2B 34 Mission ID 06 0E 2B 34 01 01 01 01 Mission Mi			,			07 02 01 01	•				microseconds elapsed since midnight
Standard						01 05 00 00	since 1970				(00:00:00), January 1, 1970.
Name						(CRC 64827)					Derived from the POSIX IEEE 1003.1
3											standard.
A Platform Tail O O E D O O O O O O O O O											Resolution: 1 microsecond.
A Platform Tail 06 0E 28 34 Number 01 01 01 01 01 01 02 00 00 00 00 00 00 00 00 00 00 00 00	3	Mission ID	06 0E 2B 34	Mn	Mission	06 0E 2B 34	Episode Number	String	ISO 646	V	Descriptive Mission Identifier to
A Platform Tail O6 06 28 34 Number O1 01 01 01 01 00 00 00 00 CRC 63358) Pt Platform Tail O6 06 28 34 Number O2 00 00 00 CRC 33322) D1 01 01 01 01 01 01 01 01 01 01 01 01 02 00 00 00 CRC 33322) D1 01 01 01 01 01 01 01 01 01 01 01 01 01			01 01 01 01		Number	01 01 01 01					distinguish event or sortie.
Marche CRC 65358 CRC 37735 CRC 377			0E 01 04 01			01 05 05 00					Value field is Free Text.
Platform Tail Number 06 0E 28 34 Pt Number 01 01 01 01 01 01 01 01 01 01 01 01 01											Maximum 127 characters.
Number											
Name	4			Pt		x	x	String	ISO 646	V	
Second Platform Heading Use EC0104 US Key In UAV Platform Platform Pitch Angle US Key In US Key In UAV Platform Platform Pitch Angle US Key In US Ke		Number			Number						
Second CRC 35322) Company CRC 35322) Company CRC 35322) CRC 353222) CRC 35322) CRC 353222) CRC 3532222 CRC 353222 CRC											
Patform Heading Angle											Maximum 127 characters.
Angle	_	DI . C				00.05.05.04	DI . C			_	
North measured in the horizontal plane. North measured in the horizontal plane. Nappo(2A16-1) to 0360. Nappo(2A16-1) to 0(2A15-1) to 1(2A15-1) to 1(2	5			In				Degrees	uint 16	2	
Platform Pitch Angle		Angle	US Key		(INS)		Angle				
Angle											·
Platform Pitch Angle											
Angle	6	Platform Pitch	Use FC0104	In	IIAV/ Pitch	· ·	Platform Pitch	Degrees	int16	2	
Positive angles above horizontal plane. Map - (2 \(\text{15} \) s out of range indicator (2 \(\text{15} \) s out of range	O			ıρ				Degrees	IIICTO	2	·
Map - (2/15 - 1)(2/15 - 1) to +/-20. Use - (2/15) as "out of range" indicator (2/15) = 0 x8000. Resolution: -610 micro degrees.		Aligie	O3 Key		, ,		Aligie				·
Platform Roll Use EC0104 US Key Ir UAV Roll (INS) 06 0E 2B 34 01 01 01 07 07 01 10 01 04 00 00 00 06 0E 2B 34 Airspeed O1 01 01 01 01 0A 00 00 00 0CRC 20280) Platform O6 0E 2B 34 Airspeed O1 01 01 01 OA 00 00 00 OCRC 20280) OF OR											,
Platform Roll						(CRC 51059)					
Platform Roll Angle US Key Us Case A Solution: 1 meter/second. Use -(2^15-1).(2^15-1) to +/-50. Use -(2^15-1) to +/-50. Use -(2^15) as "out of range" indicator(2/215) e ox8000. Res: ~1525 micro deg. True airspeed (TAS) of platform. Indicated Airspeed adjusted for temperature and altitude. 0255 meters/sec. 1 m/s = 1,94384449 knots. Resolution: 1 meter/second. Use -(2^15-1) to +/-50. Use -(2^15) as "out of range" indicator(2/15) as "out of range" i						,					
Angle US Key 01 01 01 07 07 07 01 10 01 07 07 07 01 10 01 04 00 00 00 (CRC 45511) 8 Platform True Airspeed 01 01 01 01 02 04 00 00 00 (CRC 20280) (CRC 20280) 9 Platform 06 0E 2B 34 Indicated 01 01 01 01 Airspeed 0E 01 01 01 01 OI											Resolution: ~610 micro degrees.
07 01 10 01	7	Platform Roll	Use EG0104	lr	UAV Roll (INS)	06 0E 2B 34	Platform Roll	Degrees	int16	2	Platform roll angle. Angle between
04 00 00 00 10 10 10 10 10		Angle	US Key			01 01 01 07	Angle				transverse axis and transvers-
Map (-2^15-1)(2^15-1) to +/-50. Use -(2^15) as "out of range" indicator(2^15) = 0x8000. Res: ~1525 micro deg.						07 01 10 01					longitudinal plane. Positive angles for
Sample S						04 00 00 00					lowered right wing.
B						(CRC 45511)					*
Res: ~1525 micro deg. Res: ~1525 micro deg.											Use -(2^15) as "out of range" indicator.
Platform True Airspeed Airs											, ,
Airspeed 01 01 01 01 01 01 02 00 00 00 (CRC 20280) Platform 06 0E 2B 34 1									_		
OE 01 01 01 01 01 0A 00 00 00 (CRC 20280) Platform O6 0E 2B 34 Indicated Nirspeed OE 01 01 01 01 Airspeed OE 01 01 01 01 0B 00 00 00 00 OE 0B 00 O	8			As		х	x	7	uint8	1	
OA 00 00 00 OCRC 20280)		Airspeed			Airspeed			cond			-
9 Platform 06 0E 2B 34 Ai Indicated Airspeed 0E 01 01 01 01 0 0B 00 00 00 00 0											•
9 Platform 06 0E 2B 34 Ai Indicated X X X Meters/Se uint8 1 Indicated airspeed (IAS) of platform. Derived from Pitot tube and static pressure sensors. 0255 meters/sec.											•
9 Platform 06 0E 2B 34 Ai Indicated x x x Meters/Se cond Derived from Pitot tube and static pressure sensors. 0255 meters/sec.			(CKC 20280)								
Indicated	0	Platform	06 0F 2P 34	٨١	Indicated	~	v	Maters /So	uint®	1	·
Airspeed 0E 01 01 01 0 pressure sensors. 0255 meters/sec.	9			AI		^	^	•	uiillo	'	' ' '
0B 00 00 00 00 0255 meters/sec.					VII sheen			Conu			
		All speed									•
[[[[]] [] [] [] [] [] [] []											•
Resolution: 1 meter/second.			(3.10 : 1732)								·

TAG	LS Name	Mapped US	ESD	ESD Name	US	US Name	Units	Format	Len	Notes
10	Platform Designation	Use EG0104 US Key	Pc	Project ID Code	06 0E 2B 34 01 01 01 01 01 01 20 01 00 00 00 00 (CRC 36601)	Device Designation	String	ISO 646	V	Use Platform Designation String e.g.: 'Predator', 'Reaper', 'Outrider', 'Pioneer', 'IgnatER', 'Warrior', 'Shadow', 'Hunter II', 'Global Hawk', 'Scan Eagle', etc. Value field is Free Text. Maximum 127 characters.
11	Image Source Sensor	Use EG0104 US Key	Sn	Sensor Name	06 0E 2B 34 01 01 01 01 04 20 01 02 01 01 00 00 (CRC 53038)	Image Source Device	String	ISO 646		String of image source sensor. E.g.: 'EO Nose', 'EO Zoom (DLTV)', 'EO Spotter', 'IR Mitsubishi PtSi Model 500', 'IR InSb Amber Model TBT', 'LYNX SAR Imagery', 'TESAR Imagery', etc. Value field is Free Text. Maximum 127 characters.
12	Image Coordinate System	Use EG0104 US Key	Ic	lmage Coordinate System	06 0E 2B 34 01 01 01 01 07 01 01 01 00 00 00 00 (CRC 32410)	Image Coordinate System	String	ISO 646		String of the image coordinate system used. E.g.: 'Geodetic WGS84', 'Geocentric WGS84', 'UTM', 'None', etc.
13	Sensor Latitude	Use EG0104 US Key	Sa	Sensor Latitude	06 0E 2B 34 01 01 01 03 07 01 02 01 02 04 02 00 (CRC 8663)	Device Latitude	Degrees	int32		Sensor Latitude. Based on WGS84 ellipsoid. Map $-(2^31-1)(2^31-1)$ to $+/-90$. Use $-(2^31)$ as an "error" indicator. $-(2^31) = 0 \times 80000000$. Resolution: ~ 42 nano degrees.
14	Sensor Longitude	Use EG0104 US Key	So	Sensor Longitude	06 0E 2B 34 01 01 01 03 07 01 02 01 02 06 02 00 (CRC 20407)	Device Longitude	Degrees	int32		Sensor Longitude. Based on WGS84 ellipsoid. Map $-(2^31-1)(2^31-1)$ to $+/-180$. Use $-(2^31)$ as an "error" indicator. $-(2^31) = 0 \times 80000000$. Resolution: ~ 84 nano degrees.
15	Sensor True Altitude	Use EG0104 US Key	SI	Sensor Altitude	06 0E 2B 34 01 01 01 01 07 01 02 01 02 02 00 00 (CRC 13170)	Device Altitude	Meters	uint16		Altitude of sensor as measured from Mean Sea Level (MSL). Map 0(2^16-1) to -90019000 meters. 1 meter = 3.2808399 feet. Resolution: ~0.3 meters.
16	Sensor Horizontal field of View	Use EG0104 US Key	Fv	field of View	06 0E 2B 34 01 01 01 02 04 20 02 01 01 08 00 00 (CRC 23753)	field of View (FOV-Horizontal)	Degrees	uint16		Horizontal field of view of selected imaging sensor. Map 0(2^16-1) to 0180. Resolution: ~2.7 milli degrees.
17	Sensor Vertical Field of View	06 0E 2B 34 01 01 01 07 04 20 02 01 01 0A 01 00 (CRC 30292)	Vv	Vertical Field of View	x	x	Degrees	uint16	2	Vertical field of view of selected imaging sensor. Map 0(2^16-1) to 0180. Resolution: ~2.7 milli degrees. Requires data conversion between LS value and SMPTE Mapped US Key.
18	Azimuth Angle	06 0E 2B 34 01 01 01 01 0E 01 01 02 04 00 00 00 (CRC 944)		Sensor Relative Azimuth Angle	x	x	Degrees	uint32		Relative rotation angle of sensor to platform longitudinal axis. Rotation angle between platform longitudinal axis and camera pointing direction as seen from above the platform. Map 0(2^32-1) to 0360. Resolution: ~84 nano degrees.
19	Sensor Relative Elevation Angle	06 0E 2B 34 01 01 01 01	De	Sensor Relative	x	x	Degrees	int32		Relative Elevation Angle of sensor to platform longitudinal–transverse plane. Negative angles down.

TAG	LS Name	Mapped US	ESD	ESD Name	US	US Name	Units	Format	Len	Notes
		0E 01 01 02 05 00 00 00 (CRC 29956)		Elevation Angle						Map -(2^31-1)(2^31-1) to +/-180. Use -(2^31) as an "error" indicator. -(2^31) = 0x80000000. Res: ~84 ndeg.
20	Sensor Relative Roll Angle	06 0E 2B 34 01 01 01 01 0E 01 01 02 06 00 00 00 (CRC 61144)		Sensor Relative Roll Angle	x	×	Degrees	uint32	4	Relative roll angle of sensor to aircraft platform. Twisting angle of camera about lens axis. Top of image is zero degrees. Positive angles are clockwise when looking from behind camera. Map 0(2^32-1) to 0360. Resolution: ~84 nano degrees.
21	Slant Range	Use EG0104 US Key	Sr	Slant Range	06 0E 2B 34 01 01 01 01 07 01 08 01 01 00 00 00 (CRC 16588)	Slant Range	Meters	uint32	4	Slant range in meters. Distance to target. Map 0(2^32-1) to 05000000 meters. 1 nautical mile (knot) = 1852 meters. Resolution: ~1.2 milli meters.
22	Target Width	Use EG0104 US Key	Tw	Target Width	06 0E 2B 34 01 01 01 01 07 01 09 02 01 00 00 00 (CRC 60350)	Target Width	Meters	uint16	2	Target Width within sensor field of view. Map 0(2^16-1) to 010000 meters. 1 meter = 3.2808399 feet. Resolution: ~.16 meters.
23	Frame Center Latitude	Use EG0104 US Key	Та	Target Latitude	06 0E 2B 34 01 01 01 01 07 01 02 01 03 02 00 00 (CRC 17862)	Frame Center Latitude	Degrees	int32	4	Terrain Latitude of frame center. Based on WGS84 ellipsoid. Map -(2^31-1)(2^31-1) to +/-90. Use -(2^31) as an "error" indicator(2^31) = 0x80000000. Resolution: ~42 nano degrees.
24	Frame Center Longitude	Use EG0104 US Key	То	Target Longitude	06 0E 2B 34 01 01 01 01 07 01 02 01 03 04 00 00 (CRC 63334)	Frame Center Longitude	Degrees	int32	4	Terrain Longitude of frame center. Based on WGS84 ellipsoid. Map -(2^31-1)(2^31-1) to +/-180. Use -(2^31) as an "error" indicator(2^31) = 0x80000000. Resolution: ~84 nano degrees.
25	Frame Center Elevation	06 0E 2B 34 01 01 01 0A 07 01 02 01 03 16 00 00 (CRC 57054)	Te	Frame Center Elevation	x	x	Meters	uint16	2	Terrain elevation at frame center relative to Mean Sea Level (MSL). Map 0(2^16-1) to -90019000 meters. Resolution: ~0.3 meters.
26	Offset Corner Latitude Point 1	Use EG0104 US Key	Rg	SAR Latitude 4	06 0E 2B 34 01 01 01 03 07 01 02 01 03 07 01 00 (CRC 23392)	Corner Latitude Point 1 (Decimal Degrees)	Degrees	int16		Frame Latitude, offset for upper left corner. Based on WGS84 ellipsoid. Use with Frame Center Latitude. Map -(2^15-1)(2^15-1) to +/-0.075. Use -(2^15) as an "error" indicator(2^15) = 0x8000. Resolution: ~1.2micro deg, ~0.25meters at equator.
27	Offset Corner Longitude Point 1	Use EG0104 US Key	Rh	SAR Longitude 4	06 0E 2B 34 01 01 01 03 07 01 02 01 03 0B 01 00 (CRC 11777)	Corner Longitude Point 1 (Decimal Degrees)	Degrees	int16	2	Frame Longitude, offset for upper left corner. Based on WGS84 ellipsoid. Use with Frame Center Longitude. Map -(2^15-1)(2^15-1) to +/-0.075. Use -(2^15) as an "error" indicator(2^15) = 0x8000. Resolution: ~1.2micro deg, ~0.25meters at equator.
28	Offset Corner Latitude Point 2	Use EG0104 US Key	Ra	SAR Latitude 1	06 0E 2B 34 01 01 01 03 07 01 02 01 03 08 01 00	Corner Latitude Point 2 (Decimal Degrees)	Degrees	int16		Frame Latitude, offset for upper right corner. Based on WGS84 ellipsoid. Use with Frame Center Latitude. Map -(2^15-1)(2^15-1) to +/-0.075.

TAG	LS Name	Mapped US	ESD	ESD Name	US	US Name	Units	Format	Len	Notes
					(CRC 30545)					Use -(2^15) as an "error" indicator. -(2^15) = 0x8000. Resolution: ~1.2micro deg, ~0.25meters at equator.
29	Offset Corner Longitude Point 2	Use EG0104 US Key	Rb	SAR Longitude 1	06 0E 2B 34 01 01 01 03 07 01 02 01 03 0C 01 00 (CRC 43921)	Corner Longitude Point 2 (Decimal Degrees)	Degrees	int16	2	Frame Longitude, offset for upper right corner. Based on WGS84 ellipsoid. Use with Frame Center Longitude. Map -(2^15-1)(2^15-1) to +/-0.075. Use -(2^15) as an "error" indicator(2^15) = 0x8000. Resolution: ~1.2micro deg, ~0.25meters at equator.
30	Offset Corner Latitude Point 3	Use EG0104 US Key	Rc	SAR Latitude 2	06 0E 2B 34 01 01 01 03 07 01 02 01 03 09 01 00 (CRC 16481)	Corner Latitude Point 3 (Decimal Degrees)	Degrees	int16	2	Frame Latitude, offset for lower right corner. Based on WGS84 ellipsoid. Use with Frame Center Latitude. Map -(2^15-1)(2^15-1) to +/-0.075. Use -(2^15) as an "error" indicator(2^15) = 0x8000. Resolution: ~1.2micro deg, ~0.25meters at equator.
31	Offset Corner Longitude Point 3	Use EG0104 US Key	Rd	SAR Longitude 2	06 0E 2B 34 01 01 01 03 07 01 02 01 03 0D 01 00 (CRC 40097)	Corner Longitude Point 3 (Decimal Degrees)	Degrees	int16	2	Frame Longitude, offset for lower right corner. Based on WGS84 ellipsoid. Use with Frame Center Longitude. Map -(2^15-1)(2^15-1) to +/-0.075. Use -(2^15) as an "error" indicator(2^15) = 0x8000. Resolution: ~1.2micro deg, ~0.25meters at equator.
32	Offset Corner Latitude Point 4	Use EG0104 US Key	Re	SAR Latitude 3	06 0E 2B 34 01 01 01 03 07 01 02 01 03 0A 01 00 (CRC 6449)	Corner Latitude Point 4 (Decimal Degrees)	Degrees	int16	2	Frame Latitude, offset for lower left corner. Based on WGS84 ellipsoid. Use with Frame Center Latitude. Map -(2^15-1)(2^15-1) to +/-0.075. Use -(2^15) as an "error" indicator(2^15) = 0x8000. Resolution: ~1.2micro deg, ~0.25meters at equator.
33	Offset Corner Longitude Point 4	Use EG0104 US Key	Rf	SAR Longitude 3	06 0E 2B 34 01 01 01 03 07 01 02 01 03 0E 01 00 (CRC 50673)	Corner Longitude Point 4 (Decimal Degrees)	Degrees	int16		Frame Longitude, offset for lower left corner. Based on WGS84 ellipsoid. Use with Frame Center Longitude. Map -(2^15-1)(2^15-1) to +/-0.075. Use -(2^15) as an "error" indicator(2^15) = 0x8000. Resolution: ~1.2micro deg, ~0.25meters at equator.
34	lcing Detected	06 0E 2B 34 01 01 01 01 0E 01 01 01 0C 00 00 00 (CRC 26785)	Id	Icing Detected	x	x	Icing Code	uint8	1	Flag for icing detected at aircraft location. 0: Detector off 1: No icing Detected 2: Icing Detected
35	Wind Direction	06 0E 2B 34 01 01 01 01 0E 01 01 01 0D 00 00 00 (CRC 7701)	Wd	Wind Direction	x	x	Degrees	uint16	2	Wind direction at aircraft location. This is the direction the wind is coming from relative to true north. Map 0(2^16-1) to 0360. Resolution: ~5.5 milli degrees.
36	Wind Speed	06 0E 2B 34 01 01 01 01 0E 01 01 01 0E 00 00 00	Ws	Wind Speed	x	х	Meters/Se cond	uint8	1	Wind speed at aircraft location. Map 0255 to 0100 meters/second. 1 m/s = 1.94384449 knots. Resolution: ~0.4 meters / second.

TAG	LS Name	Mapped US	ESD	ESD Name	US	US Name	Units	Format	Len	Notes
		(CRC 34249)								
37		06 0E 2B 34 01 01 01 01 0E 01 01 01 0F 00 00 00 (CRC 62333)	Ps	Static Pressure	x	x	Millibar	uint16	2	Static pressure at aircraft location. Map 0(2^16-1) to 05000 mbar. 1 mbar = 0.0145037738 PSI. Resolution: ~0.08 Millibar
38	,	06 0E 2B 34 01 01 01 01 0E 01 01 01 10 00 00 00 (CRC 15412)	Da	Density Altitude	х	x	Meters	uint16		Density altitude at aircraft location. Relative aircraft performance metric based on outside air temperature, static pressure, and humidity. Map 0(2^16-1) to -90019000 meters. Offset = -900. 1 meter = 3.2808399 feet. Resolution: ~0.3 meters.
39		06 0E 2B 34 01 01 01 01 0E 01 01 01 11 00 00 00 (CRC 19072)	At	Air Temperature	х	x	Celcius	int8	1	Temperature outside of aircraft. -128127 Degrees Celsius. Resolution: 1 degree celsius.
40	Latitude	06 0E 2B 34 01 01 01 01 0E 01 01 03 02 00 00 00 (CRC 36472)	X	х	х	x	Degrees	int32		Calculated Target latitude. This is the crosshair location if different from frame center. Based on WGS84 ellipsoid. Map -(2^31-1)(2^31-1) to +/-90. Use -(2^31) as an "error" indicator(2^31) = 0x80000000. Resolution: ~42 nano degrees.
41	3	06 0E 2B 34 01 01 01 01 0E 01 01 03 03 00 00 00 (CRC 63692)	X	x	х	x	Degrees	int32	4	Calculated Target longitude. This is the crosshair location if different from frame center. Based on WGS84 ellipsoid. Map -(2^31-1)(2^31-1) to +/-180. Use -(2^31) as an "error" indicator(2^31) = 0x80000000. Resolution: ~84 nano degrees.
42	Elevation	06 0E 2B 34 01 01 01 01 0E 01 01 03 04 00 00 00 (CRC 43489)	X	х	х	x	Meters	uint16		Calculated target elevation. This is the crosshair location if different from frame center. Map 0(2^16-1) to -90019000 meters. Offset = -900. 1 meter = 3.2808399 feet. Resolution: ~0.3 meters.
43		06 0E 2B 34 01 01 01 01 0E 01 01 03 05 00 00 00 (CRC 57173)	x	х	х	x	Pixels	uint8	1	Tracking gate width (x value) of tracked target within field of view. Closely tied to source video resolution in pixels.
	j	06 0E 2B 34 01 01 01 01 0E 01 01 03 06 00 00 00 (CRC 17545)	x	x	x	x	Pixels	uint8	1	Tracking gate height (y value) of tracked target within field of view. Closely tied to source video resolution in pixels.
45	Target Error Estimate – CE90	06 0E 2B 34 01 01 01 01 0E 01 01 03 07 00 00 00	х	x	х	х	Meters	uint16	2	Circular Error 90 (CE90) is the estimated error distance in the horizontal direction.

TAG	LS Name	Mapped US	ESD	ESD Name	US	US Name	Units	Format	Len	Notes
		(CRC 12861)								Specifies the radius of 90% probability
										on a plane tangent to the earth's
										surface.
										Res: ~0.0624 meters
46		06 0E 2B 34	Х	×	x	x	Meters	uint16	2	Lateral Error 90 (LE90) is the estimated
		01 01 01 01								error distance in the vertical (or lateral)
		0E 01 01 03								direction.
		08 00 00 00								Specifies the interval of 90% probability
		(CRC 59091)								in the local vertical direction. Res: 0.0625 meters
47	Generic Flag Data	06 0E 2B 34	х	х	Х	x	None	uint8	1	Generic Flagged Metadata
47		01 01 01 01	X	 *	X	X	None	uiiito	'	Position Format msb81lsb
	01	0E 01 01 03								1 - Laser Range 1 on,0 off
		01 00 00 00								2- Auto-Track 1 on,0 off
		(CRC 5540)								3- IR Polarity 1 blk,0wht
		(6.16 33 10)								4- Icing detected 1ice,0(off/no ice)
										5- Slant Range 1 measured, 0calc
										6- Image Invalid 1 invalid, 0 valid
										7,8- Use 0
48	Security Local	Use ST0102	х	х	06 0E 2B 34	Security Local	None	Set	Х	Local set tag to include the ST0102
	Metadata Set	US key for			02 03 01 01	Metadata Set				Local Set Security Metadata items within
		Local Sets.			0E 01 03 03					ST0601. Use the ST0102 Local Set Tags
					02 00 00 00					within the ST0601 Tag 0d48.
					(CRC 40980)					The length field is the size of all ST0102
										metadata items to be packaged within
										Tag 0d48.
49	Differential	06 0E 2B 34	X	x	х	x	Millibar	uint16	2	Differential pressure at aircraft location.
	Pressure	01 01 01 01								Measured as the
		0E 01 01 01								Stagnation/impact/total pressure minus
		01 00 00 00								static pressure.
		(CRC 20775)								Map 0(2^16-1) to 05000 mbar.
										1 mbar = 0.0145037738 PSI. Res: ~0.08 mbar
50	Platform Angle of	06 0E 2B 24	х	х	Х	x	Degrees	int16	2	Platform Attack Angle. Angle between
30	_	01 01 01 01	X	 *	X	X	Degrees	111(16	2	platform longitudinal axis and relative
		0E 01 01 01								wind.
		02 00 00 00								Positive angles for upward relative wind.
		(CRC 51963)								Map $-(2^{15}-1)(2^{15}-1)$ to $+/-20$.
		,								Use -(2^15) as an "out of range"
										indicator.
										$-(2^15) = 0x8000.$
										Res: ~610 micro degrees.
51	Platform Vertical	06 0E 2B 34	х	x	x	x	Meters/Se	int16	2	Vertical speed of the aircraft relative to
	Speed	01 01 01 01					cond			zenith. Positive ascending, negative
		0E 01 01 01								descending.
		03 00 00 00								Map-(2^15-1)(2^15-1) to +/-180
		(CRC 48207)								Use -(2^15) as an "out of range"
										indicator.
										$-(2^15) = 0 \times 8000.$
	DI 16 DI 1	00.05.55								Resolution: ~ 0.0055 meters/second.
52		06 0E 2B 34	х	х	Х	x	Degrees	int16	2	The sideslip angle is the angle between
		01 01 01 01								the platform longitudinal axis and
		0E 01 01 01								relative wind.
		04 00 00 00 (CRC CO770)								Positive angles to right wing, neg to left.
		(CRC 60770)								Map $-(2^15-1)(2^15-1)$ to $+/-20$.
										Use -(2^15) as an "out of range" indicator.
										Indicator. $-(2^15) = 0 \times 8000.$
										(Z^1) - UXBUUU.

TAG	LS Name	Mapped US	FSD	ESD Name	US	US Name	Units	Format	Len	Notes
IAG	LS Hame	нарреи 03	LJD	LSD Name	- 03	OS Name	Offics	Torriac	Len	Res: ~610 micro deg.
53	Airfield Barometric Pressure	06 0E 2B 34 01 01 01 01 0E 01 01 02 02 00 00 00 (CRC 9257)	×	х	х	x	Millibar	uint16	2	Local pressure at airfield of known height. Pilot's responsibility to update. Map 0(2^16-1) to 05000 mbar. 1013.25mbar = 29.92inHg Min/max recorded values of 870/1086mbar. Resolution: ~0.08 Millibar
54	Airfield Elevation	06 0E 2B 34 01 01 01 01 0E 01 01 02 03 00 00 00 (CRC 21149)	x	х	х	x	Meters	uint16	2	Elevation of Airfield corresponding to Airfield Barometric Pressure. Map 0(2^16-1) to -90019000 meters. Offset = -900. 1 meter = 3.2808399 feet. Resolution: ~0.3 meters.
55	Relative Humidity	06 0E 2B 34 01 01 01 01 0E 01 01 01 09 00 00 00 (CRC 54500)	х	х	х	x	Percent	uint8	1	Relative Humidity at aircraft location. Map 0(2^8-1) to 0100. Resolution: ~0.4%.
56	Platform Ground Speed	06 0E 2B 34 01 01 01 01 0E 01 01 01 05 00 00 00 (CRC 39894)	Gv	Platform Ground Speed	x	x	Meters/Se cond	uint8	1	Speed projected to the ground of an airborne platform passing overhead. 0255 meters/sec. 1 m/s = 1.94384449 knots. Resolution: 1 meter/second.
57	Ground Range	06 0E 2B 34 01 01 01 01 0E 01 01 01 06 00 00 00 (CRC 10)	Gr	Ground Range	х	x	Meters	uint32	4	Horizontal distance from ground position of aircraft relative to nadir, and target of interest. Dependent upon Slant Range and Depression Angle. Map 0(2^32-1) to 05000000 meters. 1 nautical mile (knot) = 1852 meters. Resolution: ~1.2 milli meters.
58		06 0E 2B 34 01 01 01 01 0E 01 01 01 07 00 00 00 (CRC 30398)		Platform Fuel Remaining	x	x	Kilogram	uint16	2	Remaining fuel on airborne platform. Metered as fuel weight remaining. Map 0(2^16-1) to 010000 Kilograms. 1 kilogram = 2.20462262 pounds. Resolution: ~.16 kilograms.
59	Platform Call Sign	06 0E 2B 34 01 01 01 01 0E 01 04 01 01 00 00 00 (CRC 4646)	Cs	Platform Call Sign	х	x	String	ISO 646	>	Call Sign of platform or operating unit. Value field is Free Text.
60	•	06 0E 2B 34 01 01 01 01 0E 01 01 01 12 00 00 00 (CRC 53596)	WI	Weapon Load	x	x	uint16	nibble	2	Current weapons stored on aircraft broken into two bytes: [K][L][V] = [0x41][0x02][[byte1][byte2]] [byteN] = [[nib1][nib2]], nib1 = msn byte1-nib1 = Station Number byte1-nib2 = Substation Number byte2-nib1 = Weapon Type byte2-nib2 = Weapon Variant
61	Weapon Fired	06 0E 2B 34 01 01 01 01 0E 01 01 01 13 00 00 00 (CRC 42984)	Wf	Weapon Fired	x	x	uint8	nibble	1	Indication when a particular weapon is released. Correlate with Unix Time stamp. Identical format to Weapon Load byte 2: [byteN] = [[nib1][nib2]] nib1 = Station Number nib2 = Substation Number

TAG	LS Name	Mapped US	ESD	ESD Name	US	US Name	Units	Format	Len	Notes
		06 0E 2B 34		Laser PRF	X	x	None	uint16		A laser's Pulse Repetition Frequency
02		01 01 01 01		Code	^				_	(PRF) code used to mark a target.
		0E 01 02 02								The Laser PRF code is a three or four
		01 00 00 00								digit number consisting of the values
		(CRC 28949)								18.
										Only the values 11118888 can be used
	5. 11. 6	00.05.25.24	.,	6 511						without 0's or 9's.
		06 0E 2B 34 01 01 01 01	Vn	Sensor Field of View Name	Х	x	List	uint8	1	Names sensor field of view quantized steps.
	view Name	0E 01 02 02		or view Name						00 = Ultranarrow
		02 00 00 00								01 = Narrow
		(CRC 60105)								02 = Medium
										03 = Wide
										04 = Ultrawide
										05 = Narrow Medium
										06 = 2x Ultranarrow
C 4	Distform Mannetic	06.05.38.34	NAL	Platform			D		2	07 = 4x Ultranarrow
	Platform Magnetic Heading	01 01 01 01	Mh	Magnetic	х	x	Degrees	uint16		Aircraft magnetic heading angle. Relative between longitudinal axis and
	•	0E 01 01 01		Heading						Magnetic North measured in the
		08 00 00 00								horizontal plane.
		(CRC 41552)								Map 0(2^16-1) to 0360.
										Resolution: ~5.5 milli degrees.
		06 0E 2B 34	lv	ESD ICD	x	x	Number	uint8	1	Version number of the UAS LS document
		01 01 01 01		Version						used to generate a source of UAS LS KLV
		0E 01 02 03 03 00 00 00								metadata. 0 is pre-release, initial release (0601.0),
		(CRC 13868)								or test data.
		(CRC 13000)								1255 corresponds to document
										revisions ST0601.1 thru ST0601.255.
66	Target Location	06 0E 2B 34	х	х	х	x	TBD	TBD	TBD	Covariance Matrix of the error
	Covariance Matrix	02 05 01 01								associated with a targeted location.
		0E 01 03 03								Details TBD.
		14 00 00 00 (CDC 2012C)								
67	Alternate Platform	(CRC 28126)	х	x	х	x	Degrees	int32	4	Alternate Platform Latitude. Represents
		01 01 01 01	^	^	^	^	Degrees	IIICJZ	~	latitude of platform connected with UAS.
		0E 01 01 01								Based on WGS84 ellipsoid.
		14 00 00 00								Map -(2^31-1)(2^31-1) to +/-90.
		(CRC 63173)								Use -(2^31) as an "error" indicator.
										$-(2^31) = 0 \times 80000000$.
										Resolution: ~42 nano degrees.
	Alternate Platform		х	×	Х	х	Degrees	int32	4	Alternate Platform Longitude.
	3	01 01 01 01 0E 01 01 01								Represents longitude of platform connected with UAS.
		15 00 00 00								Based on WGS84 ellipsoid.
		(CRC 32881)								Map $-(2^31-1)(2^31-1)$ to $+/-180$.
		(3.10.0007)								Use -(2^31) as an "error" indicator.
										$-(2^31) = 0 \times 80000000$.
										Resolution: ~84 nano degrees.
	Alternate Platform		х	х	х	x	Meters	uint16	2	Altitude of alternate platform as
		01 01 01 01								measured from Mean Sea Level (MSL).
		0E 01 01 01								Represents altitude of platform connec
		16 00 00 00 (CRC 7085)								ted with UAS. Map 0(2^16-1) to -90019000
		(CRC / U03)								meters.
										1 meter = 3.2808399 feet.
								<u></u>		Resolution: ~0.3 meters.

TAG	LS Name	Mapped US	ESD	ESD Name	US	US Name	Units	Format	Len	Notes
	Alternate Platform Name	06 0E 2B 34 01 01 01 01			х	х	String	ISO 646		Name of alternate platform connected to UAS.
		0E 01 01 01 17 00 00 00 (CRC 27929)								E.g.: 'Apachce', 'Rover', 'Predator', 'Reaper', 'Outrider', 'Pioneer', 'IgnatER', 'Warrior', 'Shadow', 'Hunter II', 'Global Hawk', 'Scan Eagle', etc. Value field is Free Text. Maximum 127 characters.
71	Alternate Platform Heading	06 0E 2B 34 01 01 01 01 0E 01 01 01 18 00 00 00 (CRC 47607)	x	x	x	x	Degrees	uint16	2	Heading angle of alternate platform connected to UAS. Relative between longitudinal axis and True North measured in the horizontal plane. Map 0(2^16-1) to 0360. Resolution: ~5.5 milli degrees.
72	Event Start Time – UTC	Use EG0104 US Key	X	Time, Date, and Date of	06 0E 2B 34 01 01 01 01 07 02 01 02 07 01 00 00 (CRC 11991)	Event Start Date Time - UTC	Microseco nds	uint64	8	Start time of scene, project, event, mission, editing event, license, publication, etc. Represented as the microseconds elapsed since midnight (00:00:00), January 1, 1970. Derived from the POSIX IEEE 1003.1 standard. Resolution: 1 microsecond.
73	RVT Local Set	Use ST0806 RVT LS 16- byte Key.	×	x	06 0E 2B 34 02 0B 01 01 0E 01 03 01 02 00 00 00 (CRC 17945)	Remote Video Terminal Local Set	None	Set	×	Local set tag to include the ST0806 RVT Local Set metadata items within ST0601. Use the ST0806 Local Set Tags within the ST0601 Tag 0d73. The length field is the size of all RVT LS metadata items to be packaged within Tag 0d73.
74	VMTI Data Set	Use ST0903 VMTI LS 16- byte Key.	x		06 0E 2B 34 02 0B 01 01 0E 01 03 03 06 00 00 00 (CRC 51307)	Video Moving Target Indicator Local Set	None	Set	×	Local set tag to include the ST0903 VMTI Local Set metadata items within ST0601. Use the ST0903 Local Set Tags within the ST0601 Tag 0d74. The length field is the size of all VMTI LS metadata items to be packaged within Tag 0d74.
75	Sensor Ellipsoid Height	06 0E 2B 34 01 01 01 01 0E 01 02 01 82 47 00 00 (CRC 16670)	×	x	x	x	Meters	uint16		Sensor Ellipsoid Height as measured from the reference WGS84 Ellipsoid. Map 0(2^16-1) to -90019000 meters. 1 meter = 3.2808399 feet. Resolution: ~0.3 meters.
76	, in the second	06 0E 2B 34 01 01 01 01 0E 01 02 01 82 48 00 00 (CRC 27951)	x	x	x	х	Meters	uint16	2	Alternate Platform Ellipsoid Height as measured from the reference WGS84 Ellipsoid. Map 0(2^16-1) to -90019000 meters. 1 meter = 3.2808399 feet. Resolution: ~0.3 meters.
77	Operational Mode	06 0E 2B 34 01 01 01 01 0E 01 01 03 21 00 00 00 (CRC 8938)	X	x	x	x	None	uint8	1	Indicates the mode of operations of the event portrayed in metadata. Enumerated. 0x00 = "Other" 0x01 = "Operational" 0x02 = "Training" 0x03 = "Exercise" 0x04 = "Maintenance"

TAG	LS Name	Mapped US	ESD	ESD Name	US	US Name	Units	Format	Len	Notes
										0x05 = "Test"
78	Frame Center Height Above Ellipsoid	06 0E 2B 34 01 01 01 01 0E 01 02 03 48 00 00 00 (CRC 18095)	x	х	x	x	Meters	uint16	2	Frame Center Ellipsoid Height as measured from the reference WGS84 Ellipsoid. Map 0(2^16-1) to -90019000 meters. 1 meter = 3.2808399 feet. Resolution: ~0.3 meters.
79	Sensor North Velocity	06 0E 2B 34 01 01 01 01 0E 01 02 02 7E 00 00 00 (CRC 59278)	x	x	x	x	Meters/Se c	int16	2	Northing velocity of the sensor or platform. Positive towards True North Map- $(2^15-1)(2^15-1)$ to $+/-327$ Use $-(2^15)$ as an "out of range" indicator. $-(2^15) = 0x8000$. Resolution: ~ 1 cm/sec.
80	Sensor East Velocity	06 0E 2B 34 01 01 01 01 0E 01 02 02 7F 00 00 00 (CRC 37178)	x	x	х	x	Meters/Se c	int16	2	Easting velocity of the sensor or platform. Positive towards East. Map- $(2^15-1)(2^15-1)$ to $+/-327$ Use $-(2^15)$ as an "out of range" indicator. $-(2^15) = 0x8000$. Resolution: ~ 1 cm/sec.
81	Image Horizon Pixel Pack	06 0E 2B 34 02 05 01 01 0E 01 03 02 08 00 00 00 (CRC 37658)	х	x	x	x	Pack	Pack		<tag 81=""> <length> < start x0, start y0 // point p0 end x1, end y1 // point p1 start lat, start lon end lat, end lon ></length></tag>
82	Corner Latitude Point 1 (Full)	Use EG0104 US Key	Rg	4	06 0E 2B 34 01 01 01 03 07 01 02 01 03 07 01 00 (CRC 23392)	Corner Latitude Point 1 (Decimal Degrees)	Degrees	int32	4	Frame Latitude for upper left corner. Full Range. Based on WGS84 ellipsoid. Map -(2^31-1)(2^31-1) to +/-90. Use -(2^31) as an "error" indicator. -(2^31) = 0x80000000. Resolution: ~42 nano degrees.
83	Corner Longitude Point 1 (Full)	Use EG0104 US Key		,	06 0E 2B 34 01 01 01 03 07 01 02 01 03 0B 01 00 (CRC 11777)	Corner Longitude Point 1 (Decimal Degrees)	Degrees	int32	4	Frame Longitude for upper left corner. Full Range. Based on WGS84 ellipsoid. Map -(2^31-1)(2^31-1) to +/-180. Use -(2^31) as an "error" indicator(2^31) = 0x80000000. Resolution: ~84 nano degrees.
84	Corner Latitude Point 2 (Full)	Use EG0104 US Key	Ra		06 0E 2B 34 01 01 01 03 07 01 02 01 03 08 01 00 (CRC 30545)	Corner Latitude Point 2 (Decimal Degrees)	Degrees	int32	4	Frame Latitude for upper right corner. Full Range. Based on WGS84 ellipsoid. Map -(2^31-1)(2^31-1) to +/-90. Use -(2^31) as an "error" indicator(2^31) = 0x80000000. Resolution: ~42 nano degrees.
85	Corner Longitude Point 2 (Full)	Use EG0104 US Key	Rb		06 0E 2B 34 01 01 01 03 07 01 02 01 03 0C 01 00 (CRC 43921)	Corner Longitude Point 2 (Decimal Degrees)	Degrees	int32	4	Frame Longitude for upper right corner. Full Range. Based on WGS84 ellipsoid. Map -(2^31-1)(2^31-1) to +/-180. Use -(2^31) as an "error" indicator(2^31) = 0x80000000. Resolution: ~84 nano degrees.

TAG	LS Name	Mapped US	ESD	ESD Name	US	US Name	Units	Format	Len	Notes
86		Use EG0104 US Key	Rc	2	06 0E 2B 34 01 01 01 03 07 01 02 01 03 09 01 00 (CRC 16481)	Corner Latitude Point 3 (Decimal Degrees)	Degrees	int32	4	Frame Latitude for lower right corner. Full Range. Based on WGS84 ellipsoid. Map -(2^31-1)(2^31-1) to +/-90. Use -(2^31) as an "error" indicator(2^31) = 0x80000000. Resolution: ~42 nano degrees.
87	Corner Longitude Point 3 (Full)	Use EG0104 US Key	Rd	. 5	06 0E 2B 34 01 01 01 03 07 01 02 01 03 0D 01 00 (CRC 40097)	Corner Longitude Point 3 (Decimal Degrees)	Degrees	int32	4	Frame Longitude for lower right corner. Full Range. Based on WGS84 ellipsoid. Map -(2^31-1)(2^31-1) to +/-180. Use -(2^31) as an "error" indicator(2^31) = 0x80000000. Resolution: ~84 nano degrees.
88		Use EG0104 US Key	Re	3	06 0E 2B 34 01 01 01 03 07 01 02 01 03 0A 01 00 (CRC 6449)	Corner Latitude Point 4 (Decimal Degrees)	Degrees	int32	4	Frame Latitude for lower left corner. Full Range. Based on WGS84 ellipsoid. Map -(2^31-1)(2^31-1) to +/-90. Use -(2^31) as an "error" indicator. -(2^31) = 0x80000000. Resolution: ~42 nano degrees.
89	Corner Longitude Point 4 (Full)	Use EG0104 US Key	Rf	SAR Longitude 3	06 0E 2B 34 01 01 01 03 07 01 02 01 03 0E 01 00 (CRC 50673)	Corner Longitude Point 4 (Decimal Degrees)	Degrees	int32	4	Frame Longitude for lower left corner. Full Range. Based on WGS84 ellipsoid. Map -(2^31-1)(2^31-1) to +/-180. Use -(2^31) as an "error" indicator(2^31) = 0x80000000. Resolution: ~84 nano degrees.
90		Use EG0104 US Key	lp	, ,	06 0E 2B 34 01 01 01 07 07 01 10 01 05 00 00 00 (CRC 51059)	Platform Pitch Angle	Degrees	int32		Aircraft pitch angle. Angle between longitudinal axis and horizontal plane. Positive angles above horizontal plane. Map $-(2^31-1)(2^31-1)$ to $+/-90$. Use $-(2^31)$ as an "out of range" indicator. $-(2^31) = 0x80000000$. Res: \sim 42 nano deg.
91	Platform Roll Angle (Full)	Use EG0104 US Key	lr	UAV ROII (INS)	06 0E 2B 34 01 01 01 07 07 01 10 01 04 00 00 00 (CRC 45511)	Platform Roll Angle	Degrees	int32	4	Platform roll angle. Angle between transverse axis and transvers- longitudinal plane. Positive angles for lowered right wing. Map -(2^31-1)(2^31-1) to +/-90. Use -(2^31) as an "error" indicator(2^31) = 0x80000000. Resolution: ~42 nano degrees.
92		06 0E 2B 34 01 01 01 01 0E 01 01 01 02 00 00 00 (CRC 51963)	x	х	х	x	Degrees	int32		Platform Attack Angle. Angle between platform longitudinal axis and relative wind. Positive angles for upward relative wind. Map -(2^31-1)(2^31-1) to +/-90. Use -(2^31) as an "out of range" indicator. -(2^31) = 0x80000000. Res: ~42 nano deg.
93	Angle (Full)	06 0E 2B 34 01 01 01 01 0E 01 01 01 04 00 00 00 (CRC 60770)	х	x	x	x	Degrees	int32	4	Angle between the platform longitudinal axis and relative wind. Full Range. Positive angles to right wing, neg to left. Map $-(2^31-1)(2^31-1)$ to $+/-90$.

TAG	LS Name	Mapped US	ESD	ESD Name	US	US Name	Units	Format	Len	Notes
										Use -(2^31) as an "out of range"
										indicator.
										$-(2^31) = 0x80000000$.
										Res: ~42 nano deg.
94	MIIS Core	Use ST1204	х	x	06 0E 2B 34	Motion Imagery	None	Binary	х	Local set tag to include the ST1204 MIIS
	Identifier	MIIS Core 16-			01 01 01 01	Identification		Value		Core Identifier Binary Value within
		byte Key.			0E 01 04 05	System Core				ST0601. Use according to the rules and
					03 00 00 00					requirements defined in ST1204.
					(CRC 30280)					
95	SAR Motion	Use ST1206	х	x	06 0E 2B 34	SAR Motion	None	Set	х	Local set tag to include the ST1206 SAR
	Imagery Metadata	SARMI 16-			02 OB 01 01	Imagery Metadata				Motion Imagery Metadata Local Set data
		byte Key.			0E 01 03 03					within ST0601. Use according to the
					0D 00 00 00					rules and requirements defined in
					(CRC 54900)					ST1206.

7.2 Platform and Sensor Position and Rotation Metadata

To better assist the understanding and interoperability of the UAS LS, this section describes the collective relationship between the multiple platform and sensor position and rotation metadata items available within the UAS LS.

Together the platform location and attitude, along with the sensor relative pointing angles define the location of an image or image sequence. Metadata items for sensor location (Tags 13, 14, & 15/75), platform rotations (Tags 5, 6, & 7), and sensor rotations (Tags 18, 19, & 20), along with Euler Angle order of operation rules are discussed in more detail in the subsections that follow.

7.2.1 Sensor Location

The metadata items associated with sensor location are:

- 1. Latitude Sensor Latitude (Tag 13)
- 2. Longitude Sensor Longitude (Tag 14)
- 3. Height Sensor Altitude (Tag 15), or Sensor Ellipsoid Height (Tag 75)

7.2.2 Platform Rotations

The metadata items associated with platform attitude and rotations are:

1. Platform Yaw - Platform Heading Angle (Tag 5)

The platform heading angle is defined as the angle between the platform longitudinal axis (line made by the fuselage) and true north measured in the horizontal plane. Angles increase in a clockwise direction when looking from above the platform. North is 0 degrees, east is 90, south is 180, and west is 270 degrees from true north.

2. Platform Pitch - Platform Pitch Angle (Tag 6), or full-range Platform Pitch (Tag 90)

The pitch angle of the platform is the angle between the longitudinal axis (line made by the fuselage) and the horizontal plane. Angles are positive when the platform nose is above the horizontal plane. Take special care for Platform Pitch angles equal to +/- 90.

3. Platform Roll - Platform Roll Angle (Tag 7), or full-range Platform Roll (Tag 91)

The rotation operation performed about the longitudinal axis forms the roll angle between the previous aircraft transverse-longitudinal plane and the new transverse axis location (line from wing tip to wing tip). Positive angles correspond to the starboard (right) wing lowered below the previous aircraft transverse-longitudinal plane.

7.2.3 Sensor Rotations

The metadata items associated with sensor rotations are:

1. Sensor Relative Yaw - Sensor Relative Azimuth Angle (Tag 18)

The sensor relative azimuth angle is defined as the angle between the platform longitudinal axis (line made by the fuselage) and the sensor pointing direction, measured in the plane formed by the platform longitudinal and transverse axes (line from wing tip to wing tip).

Angles increase in a clockwise direction when looking from above the platform, with 0 degrees forward along the longitudinal axis.

2. Sensor Relative Pitch - Sensor Relative Elevation Angle (Tag 19)

The relative elevation angle of the sensor to the aircraft is the downward (or upward) pointing angle of the sensor relative to the plane formed by the longitudinal axis (line made by the fuselage) and the transverse axis (line from wing tip to wing tip). Sensor pointing angles below the platform longitudinal-transverse plane are negative.

3. Sensor Relative Roll - Sensor Relative Roll Angle (Tag 20)

Sensors that are able to rotate their camera about the lens axis make use of this sensor relative roll angle. A roll angle of zero degrees occurs when the top and bottom edges of the captured image lie perpendicular to the plane created by the sensor relative depression angle axis. Positive angles are clockwise when looking from behind the camera.

7.2.4 Euler Angle Order of Operations

In order to properly determine the orientation of a sensor on an airborne platform using the UAS LS metadata items outlined in Section 7.2, a specific order of position, and rotation angles must be followed. The order of operations required to determine a sensor's orientation is as follows:

- 1. Move a sensor to the geodetic Latitude, Longitude, and altitude using
 - a. Tag 13, Sensor Latitude
 - b. Tag 14, Sensor Longitude
 - c. Tag 15, Sensor Altitude (or Tag 75: Sensor Ellipsoid Height)
- 2. Convert the geodetic coordinates to a geocentric system, then use a local-level North-East-Down (NED, right hand rule) sensor orientation.
- 3. Perform a Platform Rotation. Start with Yaw, then Pitch, the Roll.
 - a. Tag 5: Platform Heading Angle
 - b. Tag 6: Platform Pitch Angle
 - c. Tag 7: Platform Roll Angle

Refer to Figure 7-1 for the different platform rotations outlined in steps 2 and 3 above.

Figure 7-1: Platform Rotation Angle Example

- 4. Perform a Sensor Rotation. Start with Yaw, then Pitch, then Roll.
 - a. Tag 18: Sensor Relative Azimuth Angle
 - b. Tag 19: Sensor Relative Elevation Angle
 - c. Tag 20: Sensor Relative Roll Angle

Refer to Figure 7-2 for the different sensor rotations outlined in steps 4 above.

Figure 7-2: Sensor Rotation Angle Example

Once the platform and sensor attitude is known, the user is free to use other metadata items like horizontal and vertical field of view to suit the purpose of an intended application.

7.3 Sensor Image Geoposition Corner Metadata

An example of corner-coordinate metadata as used in a Motion Imagery system is shown in Figure 7-3 below.

Figure 7-3: Corner Coordinate Metadata

The Sensor Image Corner Latitude/Longitude metadata consists of the items shown in Figure 7-4. Corner coordinates are numbered to conform to National Imagery Transmission Format (NITF) Standard numbering convention for single image frame corner coordinates.

See the NITF Standards document MIL-STD-2500C Version 2.1[17] for more information about corner coordinates. Corners not corresponding to geographic locations, i.e., above the horizon, are not to be included. This numbering scheme is different than the one used in the ESD interface described in ASI-00209 Rev D "Exploitation Support Data (ESD) External Interface Control Document" [14].

Corner Point Mappings Between Metadata Types **Upper Left Corner 1 Upper Right Corner 2** Latitude Latitude Use with Use with Offset Corner Latitude Point 1 Offset Corner Latitude Point 2 rame Cente Kev 26, +/-0.15, Mapped int16 Kev 28, +/-0.15, Mapped int16 Latitude Latitude SAR Latitude 4 Corner Latitude Point 1 SAR Latitude 1 Corner Latitude Point 2 Key Rg, PDDMMSST Key Ra, PDDMMSST Offset Corner Longitude Point 1 Offset Corner Longitude Point 2 Frame Center Frame Center Key 27, +/-0.15, Mapped int16 Key 29, +/-0.15, Mapped int16 Longitude Longitude Corner Longitude Point 1 Corner Longitude Point 2 SAR Longitude 4 SAR Longitude 1 Latitude Use with Use with Offset Corner Latitude Point 4 Offset Corner Latitude Point 3 rame Cente rame Cente Key 32, +/-0.15, Mapped int16 Key 30, +/-0.15, Mapped int16 Latitude Latitude SAR Latitude 2 SAR Latitude 3 Corner Latitude Point 4 Corner Latitude Point 3 Key Re, PDDMMSST Key 03 0A 01 00, float Key Rc, PDDMMSSI Key 03 09 01 00, float Longitude Use with Offset Corner Longitude Point 4 Offset Corner Longitude Point 3 rame Cente rame Cente Key 33, +/-0.015, Mapped int16 Key 31, +/-0.15, Mapped int16 Longitude Lonaitude SAR Longitude 3 Corner Longitude Point 4 SAR Longitude 2 Corner Longitude Point 3 Kev Rf, PDDMMSST Key 03 0E 01 00, float Kev Rd, PDDMMSST Kev 03 0D 01 00, float Lower Left Corner 4 Lower Right Corner 3 NOTE: The first 12 bytes of every US KEY above are: 06 0E 2B 34 01 01 01 03 07 01 02 01

Figure 7-4 shows a detailed mapping between metadata items for each corner point.

Figure 7-4: Corner Point Mapping

The LS makes use of Offset Corner Point metadata items and requires addition with the LS Frame Center coordinates to determine the actual corner points. This differs from the US and ESD data types which use corner point items that are independent of the frame center items and explicitly define actual corner coordinates without needing computation.

The LS Offset Corner Points use a mapped 2-byte signed integer which is converted to a decimal and added as an offset to the respective decimal representation of LS Frame Center Latitude or Longitude to determine the actual corner point. This offset method used in the LS only covers a finite area about an image center point (16.6km x 16.6km square area at the Equator) yet still adequately represents a typical Motion Imagery sequence while it conserves significant bandwidth over the US implementation. In comparison, each Latitude and Longitude US corner point has one 8-byte floating point value corresponding to decimal degrees which covers the entire globe.

7.4 Alternate Platform Guideline

Within the UAS LS there are multiple metadata items which provide position and other relevant data about an "Alternate Platform". These items differ from the "Platform" or "Sensor" metadata field in that the "Alternate Platform" items provide no position or attitude information about an image sequence to which a UAS LS stream is tied.

Whenever a MISP-compliant Motion Imagery stream is created (a binary sequence typically containing metadata (i.e. UAS LS) and compressed video within an MPEG-2 transport stream) within a sensor/platform system, the sensor and platform metadata field directly relate to the imagery while the "Alternate Platform" field describe an external platform.

For instance, suppose Platform B is receiving a Motion Imagery stream from Platform A. The metadata Platform B receives would describe where Platform A is, as well as its sensor's pointing angles. Should Platform A also include "Alternate Platform" metadata, those metadata field would represent position data for Platform C, or D, or even Platform B, but Platform A must not represent itself within "Alternate Platform" field.

As a general guideline, "Alternate Platform" field do not directly describe a Motion Imagery sequence, but aid situational awareness to a Motion Imagery stream already described through metadata by the host platform.

7.5 Out of Range and Error Values

Various ST 0601 metadata items have special bit-pattern representations which indicate either the item is "Out of Range", or there is an "Error".

For instance, some angles within this Standard (such as platform pitch and roll) are represented as mapped integer values lying between a maximum and minimum angular value. Should the measured angular value lie outside the maximum or minimum value defined in this Standard, the metadata source is given the ability to convey information that a value was measured and is "Out of Range".

Other items such as latitudes and longitudes span entire angular dimensions and are not limited to an artificial minimum by this standard. In this case a single bit sequence is reserved to indicate that the metadata value is an "Error" instead of "Out of Range".

While not all mapped integer metadata items have "Error" or "Out of Range" bit sequences, those that do should only use these special values sparingly.

Systems receiving ST 0601 metadata should also take care when parsing mapped integer items to check for "Error" or "Out of Range" values prior to using the data value being represented.

8 Conversions and Mappings between Metadata Types

Metadata items that are common amongst UAS LS, Predator US, and ESD data formats each convey identical information. However, since each metadata format represents the same metadata items differently (e.g. mapped integer, float, string, etc.), the data resolution between format types is different. This section provides conversions and mappings between LS, US, and ESD metadata items.

Fields marked with an "x" are to be considered not applicable.

Example conversions tables only containing information for the LS do not have equivalent US or ESD representations.

8.1 Tag 1: Checksum Conversion

LS Tag	1		Units	Range	Format				
LS Name	Checksum		None	0(2^16-1)	uint16				
US Mapped Key	06 0E 2B 34 01 0E 01 02 03 01 (CRC 56132)								
Notes			Conversion Formula						
	d to detect error	s within a UAV		X					
Local Set page				X					
- Lower 16-bit:	s of summation.								
	entire LS packet ey and 1-byte che	•							
Example Value		Example LS Pag	cket						
0x8C ED		[K][L][V] = [0c]	11][0d2][0x8C ED]					

8.1.1 Example 16-bit Checksum Code

8.1.2 Sample Checksum Data

```
060E

+ 2B34

3142

+ 0200

3342

+ 81BB

B4FD <-- Final Checksum
```

8.2 Tag 2: UNIX Time Stamp Conversion

LS Tag	2		Units	Range	Format				
LS Name	UNIX Time Stamp		Microseconds	0(2^64-1)	uint64				
US Mapped	Use EG0104 US K	ey							
Key									
Notes			Conversion Formula						
- Coordinated	Universal Time (JTC)		X					
_ -	in the number of			X					
-	e midnight (00:00):00), January							
1, 1970.	the POSIX IEEE 1	002 1							
- Derived from standard.	tine POSIX IEEE .	.003.1							
- Resolution:	1 microsecond.								
Example Value		Example LS Pag	cket						
Oct. 24, 2008.			2][0d8][0x00 04 5	59 F4 A6 AA 4A A8					
US Key		01 01 03 05 00 00	ESD Digraph	х					
	User Defined Ti		505 W	x					
US Name	microseconds si	-	ESD Name ^						
Units	Range	Format	Units	Range	Format				
uSec	uint64	uint64	X	X	X				
Notes			Notes						
	pplication define	_	- X						
	er which represer								
	nds since Jan 1,								
standard.	the POSIX (IEEE	1003.1)							
scandard.	US Conversion			ESD Conversion					
	X			X					
To US:			To ESD:						
- X			- x						
To LS:			<u>To LS:</u>						
- x			- X						

8.2.1 Example UNIX Time Stamp

This metadata element represents UTC time as the number of microseconds elapsed since the UNIX epoch of January 1, 1970, and is contained within 8-bytes.

A Precision Time Stamp discretely labels a scale of time. This system is widely used within systems of differing underlying architectures. The Precision Time Stamp is an encoding of Coordinated Universal Time (UTC), and therefore, accounts for the addition (or subtraction) of leap seconds. Leap seconds are used to synchronize the UTC clock metric with the yearly rotation period of the earth about the sun.

8.3 Tag 3: Mission ID Conversion

LS Tag	3		Units	Range	Format				
LS Name	Mission ID		String	1127	ISO 646				
US Mapped	06 OE 2B 34 O1	01 01 01							
Key	0E 01 04 01 03	00 00 00							
Notes			Conversion Formula						
- Descriptive	Mission Identifie	er to		X					
	event or sortie.			X					
- Value field									
- Maximum 127	characters.								
Example Value		Example LS Pag							
MISSION01			3][0d9][0x4D 49	53 53 49 4F 4E 30	31]				
US Key	06 0E 2B 34 01 01 05 05 00 00		ESD Digraph Mn						
US Name	Episode Number		ESD Name Mission Number						
Units	Range	Format	Units	Range	Format				
Number	X	Float	Alpha-Numeric	19	String				
Notes			Notes						
- X			- Number to dis	tinguish differe	nt missions				
			started on a	given day.					
	US Conversion			ESD Conversion					
	X			X					
To US:			To ESD:						
- x			- X						
To LS:			To LS:						
- x			- x						

8.3.1 Example Mission ID

Format and contents of a Mission ID are to be determined.

8.4 Tag 4: Platform Tail Number Conversion

LS Tag	4		Units	Range	Format	
LS Name	Platform Tail Nur	mber	String	1127	ISO 646	
US Mapped	06 OE 2B 34 O1 0	01 01 01				
Key	OE 01 04 01 02 0	00 00 00				
Notes			Conversion For	mula		
- Identifier	of platform as pos	ted.		X		
- E.g.: "AF00	8", "BP101", etc.			X		
- Value field	is Free Text.					
- Maximum 127						
Example Value		Example LS Pack	et			
AF-101		[K][L][V] = [0d4]][0d6][0x41 46 2D 31 30 31]			
US Key	Х		ESD Digraph	Pt		
US Name	х		ESD Name	Platform Tail 1	Number	
Units	Range	Format	Units	Range	Format	
Х	X	X	Number	03	N	
Notes			Notes			
- X			- X			
US Conversion			ESD Conversion			
	Х			Х		
To US:			To ESD:			
- x			- x			
To LS:			To LS:			
- X			- X			

8.4.1 Example Platform Tail Number

Format and contents of a Platform Tail Number are to be determined.

8.5 Tag 5: Platform Heading Angle Conversion

LS Tag	5		Units	Range	Format
LS Name	Platform Heading	-	Degrees	0360	uint16
US Mapped	Use EG0104 US Ke	У			
Key					
Notes			Conversion Form	nula	
longitudinal	ading angle. Related axis and True No.		LS_dec =	$= \left(\frac{\text{LS range}}{\text{int_range}} *\right)$	LS_int)
	zontal plane. 5-1) to 0360.		10 5 4	$dec = \left(\frac{360}{65535} * \right)$	T.C. 5 \
± :	~5.5 milli degree	9	тэ_э_с	lec - (65535 ^	_{T2} -2)
Example Value		Example LS Pag	cket		
159.9744 Degree			l5][0d2][0x71 C2]		
	06 OE 2B 34			Ih	
US Key	01 01 01 07		ESD Digraph		
33113)	07 01 10 01 06 00 00 00		200 Digitapii		
US Name	Platform Heading	Angle	ESD Name	UAV Heading (IN	NS)
11.14	_	_			F 1
Units	Range	Format	Units	Range	Format
Units Degrees	Range 0360	Format Float	Degrees	0359.99	DDD.HH
0			0		
Degrees Notes		Float	Degrees Notes		DDD.HH
Degrees Notes - Heading angl degrees The Heading	0360 Le of platform exp of an airborne pl	Float ressed in atform is the	Degrees Notes	0359.99	DDD.HH
Degrees Notes - Heading angl degrees The Heading angle from T	0360 Le of platform exp of an airborne pl	Float ressed in atform is the	Degrees Notes	0359.99	DDD.HH
Degrees Notes - Heading angl degrees The Heading angle from T	0360 Le of platform exp of an airborne planter North of its ted onto the horizated	Float ressed in atform is the	Degrees Notes	0359.99 of the aircraft	DDD.HH
Degrees Notes - Heading angl degrees. - The Heading angle from Taxis project	0360 Le of platform export of an airborne platform of its steed onto the horizated US Conversion	Float ressed in atform is the longitudinal ontal plane.	Degrees Notes - True heading	0359.99 of the aircraft ESD Conversion	DDD,HH
Degrees Notes - Heading angl degrees. - The Heading angle from Taxis project	0360 Le of platform exp of an airborne planter North of its ted onto the horizated	Float ressed in atform is the longitudinal ontal plane.	Degrees Notes - True heading	0359.99 of the aircraft	DDD,HH
Degrees Notes - Heading angladegrees. - The Heading angle from Taxis project US_dec	0360 Le of platform exp. of an airborne platfrue North of its ted onto the horiz US Conversion $= \left(\frac{360}{65535} * LS_ui\right)$	Float ressed in atform is the longitudinal ontal plane.	Degrees Notes - True heading ESD_dec	0359.99 of the aircraft ESD Conversion $c = \left(\frac{360}{65535} * LS\right)$	DDD.HH
Degrees Notes - Heading angladegrees. - The Heading angle from Taxis project US_dec	0360 Le of platform export of an airborne platform of its steed onto the horizated US Conversion	Float ressed in atform is the longitudinal ontal plane.	Degrees Notes - True heading ESD_dec To ESD: - Convert LS to	0359.99 of the aircraft ESD Conversion $c = \left(\frac{360}{65535} * LS\right)$ decimal.	DDD.HH
Degrees Notes - Heading angladegrees The Heading angle from Taxis project US_dec To US: - US = (float) (To LS:	0360 Le of platform exposed on airborne platform North of its seed onto the horized onto the horized $\frac{360}{65535}$ * LS_ui	Float ressed in atform is the longitudinal ontal plane.	Degrees Notes - True heading ESD_dec	0359.99 of the aircraft ESD Conversion $c = \left(\frac{360}{65535} * LS\right)$ decimal.	DDD.HH
Degrees Notes - Heading angladegrees The Heading angle from Taxis project US_dec To US: - US = (float) (To LS:	0360 Le of platform exp. of an airborne platfrue North of its ted onto the horiz US Conversion $= \left(\frac{360}{65535} * LS_ui\right)$	Float ressed in atform is the longitudinal ontal plane.	Degrees Notes - True heading ESD_dec To ESD: - Convert LS to - Convert decim	of the aircraft ESD Conversion $c = \left(\frac{360}{65535} * LS\right)$ o decimal. mal to ASCII.	DDD.HH
Degrees Notes - Heading angladegrees. - The Heading angle from Taxis project US_dec To US: - US = (float) (To LS:	0360 Le of platform exposed on airborne platform North of its seed onto the horized onto the horized $\frac{360}{65535}$ * LS_ui	Float ressed in atform is the longitudinal ontal plane.	Degrees Notes - True heading ESD_dec To ESD: - Convert LS to - Convert decim	of the aircraft ESD Conversion $c = \left(\frac{360}{65535} * LS\right)$ o decimal. The aircraft is a conversion and the aircraft is a conversion at the aircraft is a co	DDD,HH

8.5.1 Example Platform Heading Angle

The platform heading angle is defined as the angle between longitudinal axis (line made by the fuselage) and true north measured in the horizontal plane. Angles increase in a clockwise direction when looking from above the platform. North is 0 degrees, east is 90, south is 180, and west is 270 degrees from true north. Refer to Figure 8-1:

Figure 8-1: Platform True Heading Angle

8.6 Tag 6: Platform Pitch Angle Conversion

LS Tag	6		Units	Range	Format	
LS Name	Platform Pitch	Angle	Degrees	+/- 20	int16	
US Mapped	Use EG0104 US K	ey				
Key						
Notes			Conversion Form	nula		
longitudinal	cch angle. Angle Laxis and horizo	ntal plane.	LS_dec =	$\left(\frac{\text{LS range}}{\text{int_range}} * \text{LS}\right)$	S_int)	
- Map -(2^15-1	gles above horizo 1)(2^15-1) to + as "out of range	/-20.	LS_06_de	$ec = \left(\frac{40}{65534} * LS\right)$	_int)	
(2^15) = 0x						
Example Value	<u> </u>	Example LS Pag	cket .6][0d2][0xFD 3D]			
	06 OE 2B 34 O1			Ip		
US Key	07 01 10 01 05		ESD Digraph	-12		
US Name	Platform Pitch	Angle	ESD Name UAV Pitch (INS)			
Units Degrees	Range +/- 90	Float.	Units Degrees	Range +/- 20.00	Format	
Notes	+/- 90	rioac	Notes	+/- 20.00	FDD.NN	
	of platform expr	essed in		of the aircraft.		
degrees.	F					
	an airborne pla					
	ne longitudinal a					
gravitationa	cal (i.e., equi-p al surface):	otentiai				
J : :: /=	US Conversion		ESD Conversion			
US_dec	$= \left(\frac{40}{65534} * LS_{\perp}\right)$	int)	$ESD_dec = \left(\frac{40}{65534} * LS_int\right)$			
To US:			To ESD:			
- US = (float) (40/0xFFFE * LS)			- Convert LS to decimal.			
To LS:			- Convert decimal to ASCII.			
	cound(0xFFFE/40 *	US)	To LS:			
			- Convert ASCII			
			- Map decimal t	o int16.		

8.6.1 Example Platform Pitch Angle

For legacy purposes, both range-restricted (Tag 6) and full-range (Tag 90) representations of Platform Pitch Angle MAY appear in the same ST 0601 packet. A single representation is preferred favoring the full-range version (Tag 90) as per Section 6.3.

The pitch angle of the platform is the angle between the longitudinal axis (line made by the fuselage) and the horizontal plane. Angles are positive when the platform nose is above the horizontal plane (see Figure 8-2).

Pitch angles are limited to +/- 20 degrees to increase metadata resolution within this range. Should the aircraft experience flight maneuvers beyond this range, an "out of range" indication shall be made within this metadata item. Refer to the figure to the right:

Note that the int16 used in the LS value is encoded using two's complement.

Figure 8-2: Platform Pitch Angle

8.7 Tag 7: Platform Roll Angle Conversion

LS Tag	7		Units	Range	Format	
LS Name	Platform Roll An	gle	Degrees	+/- 50	int16	
US Mapped	Use EG0104 US Ke	У				
Key						
Notes			Conversion Form	nula		
- Platform roll angle. Angle between transverse axis and transvers-longitudinal plane. Positive angles for lowered right wing. - Map (-2^15-1)(2^15-1) to +/-50. - Use -(2^15) as "out of range" indicator. - (2^15) = 0x8000. - Res: ~1525 micro deq.				$\left(\frac{\text{LS range}}{\text{int_range}} * \text{LS}\right)$ $\text{ec} = \left(\frac{100}{65534} * \text{LS}\right)$		
Example Value		Example LS Pac	cket			
3.405814 Degree			7][0d2][0x08 B8]			
US Key	06 0E 2B 34 01 07 01 10 01 04		ESD Digraph	Ir		
US Name	Platform Roll An	gle	ESD Name	UAV Roll (INS)		
Units	Range	Format	Units	Range	Format	
Degrees	+/- 90	Float	Degrees	+/- 50.00	PDD.HH	
Notes			Notes			
 Roll angle of platform expressed in degrees. The Roll of an airborne platform is rotation about its longitudinal (front-to-back) axis; Wings level is zero degrees, positive (negative) angles describe a platform orientation with the right wing down(up). 			- Roll angle of	the aircraft.		
	US Conversion			ESD Conversion		
$US_dec = \left(\frac{100}{65534} * LS_int\right)$			$ESD_dec = \left(\frac{100}{65534} * LS_int\right)$			
To LS:	To US: - US = (float) (100/0xFFFE * LS)			decimal. al to ASCII. to decimal. o int16.		

8.7.1 Example Platform Roll Angle

For legacy purposes, both range-restricted (Tag 7) and full-range (Tag 91) representations of Platform Roll Angle MAY appear in the same ST 0601 packet. A single representation is preferred favoring the full-range version (Tag 91) as per Section 6.3.

The rotation operation performed about the longitudinal axis forms the roll angle between the previous aircraft transverse-longitudinal plane and the new transverse axis location (line from wing tip to wing tip). Positive angles correspond to the starboard (right) wing lowered below the previous aircraft transverse-longitudinal plane (see Figure 8-3).

Roll angles are limited to +/- 50 degrees to increase metadata resolution within this range. Should the aircraft experience flight maneuvers beyond this range, an "out of range" indication shall be made within this metadata item. Refer to the figure to the right:

Note that the int16 used in the LS value is encoded using two's complement.

Figure 8-3: Platform Roll Angle

8.8 Tag 8: Platform True Airspeed Conversion

LS Tag	8		Units	Range	Format	
LS Name	Platform True Airspeed		Meters/Second	0255	uint8	
US Mapped	06 OE 2B 34 O					
Key	OE 01 01 01 02	4 00 00 00				
Notes			Conversion Form	nula		
- True airspeed (TAS) of platform. Indicated Airspeed adjusted for				LS_dec = LS_int 8_dec = round(LS_0	08)	
temperature and altitude 0255 meters/sec 1 m/s = 1.94384449 knots.						
	1 meter/second.					
Example Value		Example LS Page				
147 m/Sec	ı	[K][L][V] = [0c				
US Key	Х		ESD Digraph	As		
US Name	Х		ESD Name	True Airspeed		
Units	Range	Format	Units	Range	Format	
X	X	X	Knots	0999	N	
Notes			Notes			
- X			- True airspeed of the aircraft.			
	US Conversion		ESD Conversion			
<u>To US:</u>	Х		$ESD_dec = \left(LS_uint * \frac{1.94384449 \text{ knots}}{1 \text{ meters/second}}\right)$			
- x			To ESD:			
<u>To LS:</u>			- Map LS to integer.			
- x			- Convert integer value to ASCII.			
			<u>To LS:</u>			
			- Convert ASCII	to integer.		
			- Map integer to	o uint8.		

8.8.1 Example Platform True Airspeed

True airspeed is the actual speed an aircraft is traveling relative through the air mass in which it flies. Without a relative wind condition, the true airspeed is equal to the speed over the ground. The true airspeed of the aircraft is calculated using the outside temperature, impact pressure (pitot tube), and static pressure.

8.9 Tag 9: Platform Indicated Airspeed Conversion

LS Tag LS Name	9 Platform Indica	ated Airsneed	Units Meters/Second	Range	Format	
US Mapped	06 0E 2B 34 01 0E 01 01 01 01	L 01 01 01	necers, second	0233	aineo	
Key	00 01 01 01 01					
Notes			Conversion Form			
	irspeed (IAS) of m Pitot tube and		те п	LS_dec = LS_int 9 dec = round(LS	00)	
pressure sei		Static	тр_0	a_dec = round(ra_	09)	
- 0255 mete						
-1 m/s = 1.9	4384449 knots.					
- Resolution:	1 meter/second.					
Example Value		Example LS Page	cket			
159 m/Sec		[K][L][V] = [0c]	19][0d1][0x9F]			
US Key	х		ESD Digraph	Ai		
US Name	Х		ESD Name	Indicated Airspe	ed	
Units	Range	Format	Units	Range	Format	
Х	X	Х	Knots	0999	N	
Notes			Notes			
- X			- Indicated airspeed of the aircraft.			
	US Conversion		ESD Conversion			
<u>To US:</u>	Х		$ESD_dec = \left(LS_uint * \frac{1.94384449 \text{ knots}}{1 \text{ meters/second}}\right)$			
- x			To ESD:			
<u>To LS:</u>			- Map LS to integer.			
- x			- Convert integer value to ASCII.			
			To LS:			
			- Convert ASCII to integer.			
			- Map integer to	-		

8.9.1 Example Platform Indicated Airspeed

The indicated airspeed of an aircraft is calculated from the difference between static pressure, and impact pressure. Static pressure is measured by a sensor not directly in the air stream and impact pressure is measured by a Pitot tube positioned strategically within the air stream. The difference in pressure while moving provides a way to calculate the indicated platform airspeed.

8.10 Tag 10: Platform Designation Conversion

LS Tag	10		Units	Range	Format	
LS Name	Platform Design	ation	String	1127	ISO 646	
US Mapped	Use EG0104 US Key					
Key						
Notes			Conversion Forr	mula		
- Use Platform	n Designation Str	ing		X		
- e.g.: 'Preda	ator', 'Reaper',	'Outrider',		X		
	IgnatER', 'Warri					
	'Global Hawk',	'Scan Eagle',				
etc.						
- Value field						
- Maximum 127	characters.					
Example Value		Example LS Pag				
MQ1-B	1		10][0d5][0x4D 51			
US Key	06 0E 2B 34 01 01 01 20 01 00	01 01 01	ESD Digraph	Pc		
US Name	Device Designat		ESD Name	Project ID Code		
Units	Range	Format	Units	Range	Format	
String	132	ISO 646	Number	099	N	
Notes			Notes			
- Identifies t	the "house name"	of the device	- The Project ID of the Collection Platform.			
used in capt	uring or generat	ing the	- (e.g., Predator, Outrider, Pioneer, etc.)			
essence.						
- 32 character						
- ISO7 character set.						
US Conversion			ESD Conversion			
Х				X		
<u>To US:</u>			<u>To ESD:</u>			
- x			- Convert string to Project ID Code.			
To LS:			To LS:			
- X			- Convert Proje	ect ID Code to st	ring.	

8.10.1 Example Platform Designation

The platform designation metadata item distinguishes which platform is carrying the Motion Imagery generating payload equipment. Some current platforms are shown in Figure 8-4:

Figure 8-4: Example Platforms

Note: Some systems use the US key 06 $\,^{\circ}$ 0E $\,^{\circ}$ 2B $\,^{\circ}$ 34 $\,^{\circ}$ 01 $\,^{\circ}$ 01 $\,^{\circ}$ 03 $\,^{\circ}$ 01 $\,^{\circ}$ 01 $\,^{\circ}$ 01 $\,^{\circ}$ 00 $\,^{\circ}$ 00 $\,^{\circ}$ 00 to represent Platform Designation instead of the 16-byte key shown above (Device Designation) as used in EG 0104.5.

8.11 Tag 11: Image Source Sensor Conversion

LS Tag	11		Units	Range	Format	
LS Name	Image Source Se	nsor	String	1127	ISO 646	
US Mapped	Use EG0104 US K	∋y				
Key						
Notes			Conversion Forr	mula		
_	age source senso			Х		
_	se', 'EO Zoom (Di	· ·		X		
	R Mitsubishi PtS: er Model TBT', '	•				
	ESAR Imagery', et					
- Value field						
- Maximum 127	characters.					
Example Value		Example LS Pac				
EO			11][0d2][0x45 4F			
US Key		01 01 01 01 00 00	ESD Digraph	Sn		
US Name	Image Source De		ESD Name			
Units	Range	Format	Units	Range	Format	
String	132	ISO 646	Name Code	07	N	
Notes			Notes			
	e type of the ima	age source.	- Identifies the source of the video image 0: EO Nose			
- 32 character - ISO7 charact			- U: EO NOSE - 1: EO Zoom (DLTV)			
- 1507 Charact	er set.		- 2: EO Spotter			
			- 3: IR Mitsubishi PtSi Model 500			
			- 4: IR Mitsubishi PtSi Model 600			
			- 5: IR InSb Amber Model TBD			
			- 6: Lynx SAR Imagery			
			- 7: TESAR Imagery			
	US Conversion			ESD Conversion		
Х			-	X		
<u>To US:</u> - x			To ESD: - Convert string to ID code.			
To LS:			To LS:			
- x			- Convert ID co	ode to string.		

8.11.1 Example Image Source Sensor

A sample imaging source sensor is shown in Figure 8-5:

Figure 8-5: Sample Imaging Sensor

8.12 Tag 12: Image Coordinate System Conversion

LS Tag	12		Units	Range	Format	
LS Name	Image Coordinate System		String	1127	ISO 646	
US Mapped	Use EG0104 US K	ey				
Key						
Notes			Conversion Form	nula		
- String of th	ne image coordina	te system used.		X		
- E.g.: 'Geode	etic WGS84', 'Geo	centric WGS84',		Х		
Example Value	, , , ,	Example LS Pag	·ket			
WGS-84			12][0d6][0x57 47	53 2D 38 341		
US Key		01 01 01	ESD Digraph	Ic		
•		00 00 00				
US Name	Image Coordinat	e System	ESD Name	lame Image Coordinate System		
Units	Range	Format	Units	Range	Format	
String	14	ISO 646	Code	03	N	
Notes			Notes			
	the Digital Geogr		- Identifies the image coordinate system used.			
	Exchange Standar		- 0: Geodetic WGS84			
referenced c	coordinate system	used at image	- 1: Geocentric WGS 84			
- ISO7 charact	or sot		- 2: UTM			
- 1507 Charact			- 3: None			
US Conversion			ESD Conversion			
Х			x			
<u>To US:</u>			<u>To ESD:</u>			
- X			- Convert string to ID code.			
To LS:			<u>To LS:</u>			
- x			- Convert ID co	de to string.		

8.12.1 World Geodetic System - 1984 (WGS 84)

The World Geodetic System of 1984 (WGS 84) is a 3-D, Earth-centered reference system developed originally by the U.S. Defense Mapping Agency. This system is the official GPS reference system.

8.12.2 Universal Transverse Mercator (UTM)

UTM is the projection of the earth onto a cylinder. The Universal Transverse Mercator Projection (UTM) divides the globe, excluding the extreme polar areas, into 100km x100km sections and projects each section onto a separate plane that is tangent to the globe at a point within that section. An orthorectifying grid is applied to the projection and results in very minor distortions as no location is greater than 140 km from the point of tangency. Distances, angles and shapes are very accurately depicted within each plane using this earth coordinate system.

Applications exist which convert between UTM and WGS84 coordinate systems and their different datum references.

8.12.3 Notes and Clarification

As of Standard 0601.4, a reference to "DIGEST V2.1 Part 3 Sec 6.4" within the UAS LS section has been removed due to the reference's inapplicability to the Image Coordinate System metadata item.

"Geodetic WGS84" is the preferred Image Coordinate System. "UTM" and other values are provided for sake of completeness to map items between legacy metadata sets.					

8.13 Tag 13: Sensor Latitude Conversion

LS Tag	13		Units	Range	Format	
LS Name	Sensor Latitude		Degrees	+/- 90	int32	
US Mapped	Use EG0104 US Key	?				
Key						
Notes			Conversion For	mula		
- Sensor Latit	ude. Based on WGS	84 ellipsoid.		/ LS range	. \	
- Map -(2^31-1) (2^31-1) to $+/-$	90.	LS_dec =	$= \left(\frac{\text{LS range}}{\text{int}_{\text{range}}} * \text{LS}\right)$	S_int)	
- Use -(2^31)	as an "error" indi	cator.				
$-(2^31) = 0x$			LS_13_dec	$= \left(\frac{180}{4294967294} \right. *$	LS_13)	
	~42 nano degrees.					
Example Value		Example LS Pag				
60.176822966978			l13][0d4][0x55 95			
US Key	06 0E 2B 34 01 (07 01 02 01 02 (ESD Digraph	Sa		
US Name	Device Latitude		ESD Name	Sensor Latitude		
Units	Range	Format	Units	Range	Format	
Degrees	+/- 90	Double	Degrees	+/- 90.00	PDDMMSST	
Notes			Notes			
	sensor's geographi	c location in	- Latitude of the aircraft. + Means North			
_	ees of latitude.		Latitude. All Latitude coordinates use WGS84.			
	ues indicate north	ern	WGS84.			
hemisphere.	ues indicate south	ern				
hemisphere.	ues indicate souti	GIII				
-	US Conversion		ESD Conversion			
$US_{dec} = \left(\frac{180}{4294967294} * LS_{int}\right)$			ESD_dec =	$= \left(\frac{180}{4294967294} * \right)$	LS_int)	
To US:			To ESD:			
- US = (double) (180/0xFFFFFFFE * LS)			- Convert LS to decimal.			
To LS:			- Convert decimal to ASCII.			
	ound(0xFFFFFFFE/18	0 * US)	<u>To LS:</u>			
			- Convert ASCI	I to decimal.		
			- Map decimal	to int32.		

8.13.1 Example Latitude

Latitude is the angular distance north or south of the earth's equator, measured in degrees along a meridian. Generated from GPS/INS information and based on the WGS84 coordinate system.

Note that this LS item for Sensor Latitude represents the imaging sensor location versus the aircraft position as represented by the ESD digraph.

In a realized system, this LS item takes into account the lever arm distance between a platform's GPS antenna (or known central platform position) to a sensor's general location (like the center of a gimbaled sensor).

While accounting for a lever arm in this crude way is sufficient for many Motion Imagery systems, it is recommended for the user to explore use of Photogrammetric metadata sets (i.e. MISB ST 0801 [21]) for improved representations of system accuracies.

Note that the int32 used in the LS value is encoded using two's complement.

8.14 Tag 14: Sensor Longitude Conversion

LS Tag	14		Units	Range	Format	
LS Name	Sensor Longitude		Degrees	+/- 180	int32	
US Mapped	Use EG0104 US Ke	7				
Key						
Notes			Conversion Form	nula		
	tude. Based on WO	S84			`	
ellipsoid.	Dabea on We	.001	LS_dec =	$\left(\frac{\text{LS range}}{\text{int_range}} * \text{LS}\right)$	S_int)	
- ') (2^31-1) to $+/-$			/ 360	\	
, ,	as an "error" indi	cator.	LS_14_dec	$= \left(\frac{360}{4294967294} *\right.$	LS_14)	
$-(2^31) = 0x$						
	~84 nano degrees.					
Example Value		Example LS Pac				
128.42675904204	,		114][0d4][0x5B 53			
US Key	06 0E 2B 34 01 07 01 02 01 02		ESD Digraph	So		
US Name	Device Longitude		ESD Name	Sensor Longitude	9	
Units	Range	Format	Units	Range	Format	
Degrees	+/- 180	Double	Degrees	+/- 180.00	PDDDMMSST	
Notes			Notes			
	sensor's geographi	c location in		the aircraft. +		
_	ees of longitude.		_	ll Longitude coor	rdinates use	
	ues indicate easte	ern	WGS84.			
hemisphere.	:					
hemisphere.	ues indicate weste	:111				
	US Conversion		ESD Conversion			
,	/ 360	\	,	/ 360	\	
US_dec =	$\left(\frac{360}{4294967294} * LS\right)$	_ ^{int})	ESD_dec =	$\left(\frac{360}{4294967294} * \right)$	LS_int)	
To US:			To ESD:			
- US = (double) (360/0xFFFFFFFE * LS)			- Convert LS to decimal.			
To LS:			- Convert decimal to ASCII.			
- LS = $(int32)r$	ound(0xFFFFFFFE/3	0 * US)	<u>To LS:</u>			
			- Convert ASCII			
			- Map decimal t	o int32.		

8.14.1 Example Longitude

Longitude is the angular distance on the earth's surface, measured east or west from the prime meridian at Greenwich, England, to the meridian passing through a position of interest. Generated from GPS/INS information and based on the WGS84 coordinate system.

Note that this LS item for Sensor Longitude represents the imaging sensor location versus the aircraft position as represented by the ESD digraph.

In a realized system, this LS item takes into account the lever arm distance between a platform's GPS antenna (or known central platform position) to a sensor's general location (like the center of a gimbaled sensor).

While accounting for a lever arm in this crude way is sufficient for many Motion Imagery systems, it is recommended for the user to explore use of Photogrammetric metadata sets (i.e. MISB ST 0801) for improved representations of system accuracies.

Note that the int32 used in the LS value is encoded using two's complement.

8.15 Tag 15: Sensor True Altitude Conversion

LS Tag	15		Units	Range	Format	
LS Name	Sensor True Alt	itude	Meters	-90019000	uint16	
US Mapped	Use EG0104 US F	Cey				
Key						
Notes			Conversion Form	nula		
- Altitude of	sensor as measur	ed from Mean	10 l. /_L	S range	055	
Sea Level (M	*		$LS_aec = \sqrt{ui}$	<u>S range</u> * LS_uint nt_range	- Offset	
- '	5-1) to -900190	00 meters.	TO 15 days	$= \left(\frac{19900}{65535} * LS_{15}\right)$	1 000	
- 1 meter = 3. - Resolution:			rs_is_dec =	$=$ $\sqrt{65535}$ 15 15	- 900	
	~0.3 meters.	Example LS Pa	ckot			
Example Value	3		d15][0d2][0xC2 21	1		
US Key	06 0E 2B 34 01 07 01 02 01 02	01 01 01	ESD Digraph	Sl		
US Name	Device Altitude	:	ESD Name	Sensor Altitude		
Units	Range	Format	Units	Range	Format	
Meters	Float	Float	Feet	+/- 099,999	PN	
Notes			Notes			
	sensor as measur MSL), (default m		- Altitude of t	he aircraft (MSL).		
	US Conversion			ESD Conversion		
US_dec =	(\frac{19900}{65535} * LS_uint	900	$ESD_dec = \left(\frac{19}{69}\right)$	9900 5535*LS_uint-900) *	3.2808399ft 1m	
To US:			To ESD:			
- US = (float)	- US = (float)((19900/0xFFFF) * LS - 900)			- Convert LS to decimal.		
<u>To LS:</u>			- Account for units.			
- LS = (uint16) round (0xFFFF/19900 * (US +			- Convert decim	al to ASCII.		
900))			To LS:			
				SCII to decimal.		
			- Account for u			
			- Map decimal to uint16.			

8.15.1 Example True Altitude

For legacy purposes, both MSL (Tag 15) and HAE (Tag 75) representations of Sensor True Altitude MAY appear in the same ST 0601 packet. A single representation is preferred favoring the HAE version (Tag 75).

True Altitude is the true vertical distance above mean sea level.

For improved modeling accuracy it is suggested to alternatively use Sensor Ellipsoid Height (Tag 75) should GPS be used to determine altitude.

Note that this LS item for Sensor Altitude represents the imaging sensor location versus the aircraft position as represented by the ESD digraph.

In a realized system, this LS item takes into account the lever arm distance between a platform's GPS antenna (or known central platform position) to a sensor's general location (like the center of a gimbaled sensor).

While accounting for a lever arm in this crude way is sufficient for many Motion Imagery systems, it is recommended for the user to explore use of Photogrammetric metadata sets (i.e. MISB ST 0801) for improved representations of system accuracies.

8.16 Tag 16: Sensor Horizontal field of View Conversion

LS Tag	16	-1 6'-11 - 6	Units	Range	Format
LS Name	Sensor Horizont	al lield of	Degrees	0180	uint16
US Mapped	Use EG0104 US K	э			
Key					
Notes			Conversion Form		
imaging sens		selected	LS_dec =	$\left(\frac{\text{LS range}}{\text{uint_range}} * \text{LS}\right)$	S_uint)
-	5-1) to 0180. ~2.7 milli degre	es.	LS_16_d	$ec = \left(\frac{180}{65535} * L\right)$	s_16)
Example Value		Example LS Page			
144.5713 Degree			16][0d2][0xCD 9C		
US Key	06 0E 2B 34 01 04 20 02 01 01	08 00 00	ESD Digraph	Fv	
US Name	field of View (Horizontal)	FOV-	ESD Name	field of View	
Units	Range	Format	Units	Range	Format
Degrees Notes	0180	Float	Degrees Notes	0180.00	DDD.HH
	zontal field of v	iew.	- Angle of view camera. Hori image, projecterrain model	of the lens on to zontal, across be ted onto the term at DTED or other evation data).	aseline of cain (flat
	US Conversion			ESD Conversion	
US_dec	$=$ $\left(\frac{180}{65535} * LS_{U}\right)$	int)	ESD_dec	$= \left(\frac{180}{65535} * LS_{-1}\right)$	uint)
To LS:	(180/0xFFFF * LS) round(0xFFFF/180	* US)	To ESD: - Convert LS to - Convert decim To LS: - Convert ESD A - Map decimal t	al to ASCII.	

8.16.1 Example Sensor Horizontal Field of View

The field of view of a lens is defined as the angle over the focal plane where objects are recorded on a film or electro-optical sensor. Field of view is dependent upon the focal length of the lens, and the physical size of the sensor. Typical imaging devices have a square or rectangular imaging sensor. The image (or sequence of images) is typically captured as a square or rectangle and displayed to a user with image edges perpendicular to level sight.

The distance between left edge and right edge is represented as an angle in the horizontal field of view metadata item. Refer to Figure 8-6:

Figure 8-6: Horizontal Field of View

8.17 Tag 17: Sensor Vertical Field of View Conversion

LS Tag	17		Units	Range	Format	
LS Name	Sensor Vertical	Field of View	Degrees	0180	uint16	
US Mapped	06 OE 2B 34 O1	01 01 07				
Key	04 20 02 01 01	0A 01 00				
Notes			Conversion Form	nula		
- Vertical fie	eld of view of se	elected imaging	LS_dec =	$\left(\frac{\text{LS range}}{\text{uint range}} * \text{LS}\right)$	S_uint)	
- Map 0(2^1	6-1) to 0180.			. – -	•	
	~2.7 milli degre		LS_17_d	lec = $\left(\frac{180}{65535} * L\right)$	s_17)	
-	ta conversion bet apped US Key.	ween LS value				
Example Value	apped os key.	Example LS Pag	cket			
152.6436 Degree	es		17][0d2][0xD9 17]		
US Key	Х		ESD Digraph	Vv		
US Name	х		ESD Name	Vertical Field o	of View	
Units	Range	Format	Units	Range	Format	
X	Х	Х	Degrees	0180.00	DDD.HH	
Notes			Notes			
- X			- Angle of view of the lens on the selected camera. Vertical across baseline of image,			
				ical across basel. o the terrain (fl		
			1 2	o the terrain (11) or other best av		
			elevation dat		4114010	
	US Conversion			ESD Conversion		
<u>To US:</u>	Х		ESD_dec	$= \left(\frac{180}{65535} * LS_{-1}\right)$	uint)	
- x			To ESD:			
To LS:			- Convert LS to	decimal.		
- x			- Convert decimal to ASCII.			
			To LS:			
			- Convert ESD A	SCII to decimal.		
			- Map decimal t	o uint16.		

8.17.1 Example Sensor Vertical Field of View

The field of view of a lens is defined as the angle over the focal plane where objects are recorded on a film or electro-optical sensor. Field of view is dependent upon the focal length of the lens, and the physical size of the sensor. Typical imaging devices have a square or rectangular imaging sensor. The image (or sequence of images) is typically captured as a square or rectangle and displayed to a user with image edges perpendicular to level sight.

The distance between top edge and bottom edge is represented as an angle in the vertical field of view metadata item. Refer to Figure 8-7:

Figure 8-7: Vertical Field of View

8.18 Tag 18: Sensor Relative Azimuth Angle Conversion

LS Tag	18		Units	Range	Format	
LS Name	Sensor Relative	Azimuth Angle	Degrees	0360	uint32	
US Mapped	06 OE 2B 34 O1					
Key	0E 01 01 02 04	00 00 00				
Notes			Conversion Form	nula		
	tation angle of s		T.O. 1	$\left(\frac{\text{LS range}}{\text{uint range}} * \text{LS}\right)$	~ · · \	
-	ngitudinal axis.		LS_dec =	(uint_range ^ L	S_uint)	
_	en platform longi oointing directio		T.S. 18 dec	$= \left(\frac{360}{4294967295} * \right)$. T.S. 1.8)	
above the p	•	n do been from	15_10_dec	4294967295	шэ_то /	
- Map 0(2^32	2-1) to 0360.					
	~84 nano degrees					
Example Value		Example LS Pag				
160.7192114743		[K][L][V] = [0d]	18][0d4][0x72 4A	-		
US Key	Х		ESD Digraph	Az	- 1	
US Name	Х		ESD Name	Sensor Relative	Azimuth Angle	
Units	Range	Format	Units	Range	Format	
X	X	Х	Degrees	0359.99	DDD.HH	
Notes			Notes			
- X			- Relative rotation angle of sensor to aircraft platform in azimuth. Rotation angle between			
			aircraft fuselage chord and camera pointing			
			direction as seen from above the platform.			
	US Conversion			ESD Conversion		
To US:			$ESD_{dec} = \left(\frac{360}{4294967294} * LS_{int}\right)$			
- x			To ESD:			
<u>To LS:</u>			- Convert LS to	decimal.		
- x			- Convert decim	al to ASCII.		
			To LS:			
				SCII to decimal.		
			- Map decimal t	o uint32.		

8.18.1 Example Sensor Relative Azimuth Angle

The relative rotation angle of the sensor is the angle formed between the platform longitudinal axis (line made by the fuselage) and the senor pointing direction as measured in the plane formed by the platform longitudinal and transverse axis (line from wing tip to wing tip). Refer to Figure 8-8

Figure 8-8: Relative Rotation Angle

8.19 Tag 19: Sensor Relative Elevation Angle Conversion

LS Tag	19		Units	Range	Format
LS Name	Sensor Relative	Elevation	Degrees	+/- 180	int32
US Mapped Key	Angle 06 0E 2B 34 01 0E 01 01 02 05				
Notes			Conversion Form	nula	
	evation Angle of ngitudinal-transv gles down			$\left(\frac{\text{LS range}}{\text{int_range}} * \text{LS}\right)$	•
- Map -(2^31-1	l)(2^31-1) to + as an "error" in		LS_19_dec	$= \left(\frac{360}{4294967294} *\right.$	LS_19)
$-(2^{\circ}31) = 05$ - Res: ~84 nde					
Example Value	-y .	Example LS Pag	cket		
-168.792324833	941 Degrees		119][0d4][0x87 F8	4B 86]	
US Key	Х		ESD Digraph	De	
US Name	Х		ESD Name	Sensor Relative Angle	Elevation
Units	Range	Format	Units	Range	Format
Notes x	X	X	Degrees Notes	+/- 180.00	PDDD.HH
- x			- Relative Elev aircraft plat	ation Angle of se form. Level flig ard is zero degre	ght with camera
	US Conversion			ESD Conversion	
<u>To US:</u>	Х		ESD_dec =	$\left(\frac{360}{4294967294} * \right)$	LS_int)
- x			To ESD:		
<u>To LS:</u>			- Convert LS to		
- x			- Convert decim	al to ASCII.	
			To LS:	COTT to deals 3	
			- Convert ESD A - Map decimal t	SCII to decimal.	
			map decimal t	O U111032.	

8.19.1 Example Sensor Relative Elevation Angle

The relative elevation angle of the sensor to the aircraft is the downward (or upward) pointing angle of the sensor relative to the plane formed by the longitudinal axis (line made by the fuselage) and the transverse axis (line from wing tip to wing tip). Sensor pointing angles below the platform longitudinal-transverse plane are negative. Refer to Figure 8-9:

Figure 8-9: Sensor Relative Elevation Angle

Note that the int32 used in the LS value is encoded using two's complement.

8.20 Tag 20: Sensor Relative Roll Angle Conversion

LS Tag LS Name	20 Sensor Relative 06 0E 2B 34 01	-	Units Degrees	Range 0360	Format uint32	
US Mapped Key	0E 01 01 02 06					
Notes			Conversion Forn	nula		
- Relative roll angle of sensor to aircraft platform. Twisting angle of camera about lens axis. Top of image is zero degrees. Positive angles are clockwise when looking			LS_dec = \(\frac{\text{LS range}}{\text{uint_range}} \times \text{LS_uint} \) LS_20_dec = \(\frac{360}{4294967295} \times \text{LS_20} \)			
from behind - Map 0(2^32		_	10_20_acc	\ 4294967295	10_20)	
Example Value	or name abgrees	Example LS Pag	cket			
176.8654376905	72 Degrees		[20][0d4][0x7D C5	5E CE]		
US Key	х		ESD Digraph	Ro		
US Name	х		ESD Name	Sensor Relative	Roll Angle	
Units	Range	Format	Units	Range	Format	
Notes	X	X	Degrees 0359.99 DDD.HH			
- x			platform. Tw lens axis. T	angle of sensor isting angle of cop of image is zees are clockwise amera.	camera about ero degrees.	
	US Conversion			ESD Conversion		
х <u>То US:</u>			$ESD_{dec} = \left(\frac{360}{4294967294} * LS_{uint}\right)$			
- x <u>To LS:</u> - x			To ESD: - Convert LS to decimal Convert decimal to ASCII.			
			To LS: - Convert ESD A - Map decimal t	SCII to decimal. o uint32.		

8.20.1 Example Sensor Relative Roll Angle

Sensors that are able to rotate their camera about the lens axis make use of this sensor relative roll angle. A roll angle of zero degrees occurs when the top and bottom edges of the captured image lie perpendicular to the plane created by the sensor relative depression angle axis. Positive angles are clockwise when looking from behind the camera.

8.21 Tag 21: Slant Range Conversion

LS Tag	21		Units	Range	Format		
LS Name	Slant Range		Meters	05,000,000	uint32		
US Mapped	Use EG0104 US K	еу					
Key							
Notes			Conversion Forn	nula			
- Slant range target.	in meters. Dist	ance to	LS_dec =	$\left(\frac{\text{LS range}}{\text{uint_range}} * \text{LS}\right)$	_uint)		
-	2-1) to 0500000						
	nile $(knot) = 185$		LS_dec =	$\left(\frac{5000000}{4294967295} * LS\right)$	_uint)		
	~1.2 milli meter						
Example Value		Example LS Pa					
68590.98 Meters			d21][0d4][0x03 83	_			
US Key	06 0E 2B 34 01 07 01 08 01 01		ESD Digraph	Sr			
US Name	Slant Range		ESD Name	Slant Range			
Units	Range	Format	Units	Range	Format		
Meters	Float	Float	Nautical Miles	018.00	II.HH		
Notes			Notes				
point on gro	om the sensor to bund of the frame cted in the capt cres)	d subject	- Distance betw	een the sensor and	the target.		
	US Conversion			ESD Conversion			
US_dec =	$\left(\frac{5000000}{4294967295} * LS\right)$	S_uint)	ESD_dec = (5000000 4294967295*LS_uint) * 1852knot 1m		
To US: - US = (float) (5000000/0xFFFFFFFF * LS) To LS: - LS = (uint32) round (0xFFFFFFFF/5000000 * US)			To ESD: - Convert LS to - Account for u - Convert knots To LS: - Convert ESD A - Account for u	nits. to ASCII. SCII to decimal.			
			- Convert feet	to uint32.			

8.21.1 Example Sensor Slant Range

The slant range is the distance between the sensor and image center. Refer to Figure 8-10.

Figure 8-10: Sensor Slant Range

As of ST 0601.3 Generic Flag Data 01 (Tag 47) contains a flag which indicates weather Slant Range is "Computed" or "Measured". By default the Slant Range is set to "Computed". "Measured" is to be used when a ranging device (radar, or laser) is providing Slant Range estimates.

8.22 Tag 22: Target Width Conversion

LS Tag	22		Units	Range	Format	
LS Name	Target Width		Meters	010,000	uint16	
US Mapped	Use EG0104 US Key					
Key						
Notes			Conversion Form	nula		
- Map 0(2^16	n within sensor f 6-1) to 010000		LS_dec =	$\left(\frac{\text{LS range}}{\text{uint_range}} * \text{LS_}\right)$	uint)	
- 1 meter = 3. - Resolution:			LS_de	$c = \left(\frac{10000}{65535} * LS_ui\right)$	nt)	
Example Value		Example LS Page	cket			
722.8199 Meters			122][0d2][0x12 81			
US Key	06 0E 2B 34 01 07 01 09 02 01		ESD Digraph	Tw		
US Name	Target Width		ESD Name	Target Width		
Units	Range	Format	Units	Range	Format	
Meters	Float	Float	Feet	099,999	N	
Notes			Notes			
	nalf width of the	-	- Width of the EO/IR Payloads field of view on			
_	to compute the f ne frame, (defaul		the ground			
points of th	US Conversion	ic meeres)	ESD Conversion			
US_dec	$= \left(\frac{10000}{65535} * LS_{1}\right)$	uint)	$ESD_dec = \left(\frac{1}{6}\right)$	0000 * LS_uint)	3.2808399ft 1m	
To US:			To ESD:			
- US = (float)	- US = (float) (10000/0xFFFF * LS)			- Convert LS to decimal.		
<u>To LS:</u>			- Account for units.			
- LS = $(uint16)$ round $(0xFFFF/10000 * US)$			- Convert feet	to ASCII.		
			To LS:	OOTT by daring 3		
			- Convert ESD A	SCII to decimal.		
			- Convert meter			

8.22.1 Example Sensor Target Width

The target width is the linear ground distance between the center of both sides of the captured image. Refer to Figure 8-11.

Figure 8-11: Target Width

Note: SMPTE periodically makes updates to its use of metadata keys and has made a change denoting Target Width as the half-width of the image. Despite this change in the SMPTE definition, the MISB continues to interpret Target Width for ST 0601 as full-width.

8.23 Tag 23: Frame Center Latitude Conversion

LS Tag	23		Units	Range	Format
LS Name	Frame Center Lat	itude	Degrees	+/- 90	int32
US Mapped	Use EG0104 US Ke	У			
Key					
Notes			Conversion Form	nula	
WGS84 ellips			LS_dec =	(LS range * L	S_int)
<u> </u>)(2 ³¹⁻¹) to +/ as an "error" ind		LS_23_dec	$= \left(\frac{180}{4294967294} \right. *$	LS_23)
` '	~42 nano degrees.				
Example Value	ii nano acgieco.	Example LS Pag	cket		
-10.54238863314	61 Degrees		l23][0d4][0xF1 01	A2 29]	
US Key	06 0E 2B 34 01 07 01 02 01 03		ESD Digraph	Ta	
US Name	Frame Center Lat	itude	ESD Name	Target Latitude	
Units	Range	Format	Units	Range	Format
Degrees	+/- 90	Double	Degrees	+/- 90.00	PDDMMSST
Notes			Notes		
geographic l latitude. - Positive val	e video frame cen ocation in decima ues indicate nort	l degrees of	the ground.	the EO/IR payload + Means North lated dinates use WGS8	ttitude. All
hemisphere.		1			
hemisphere.	ues indicate sout	HETH			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	US Conversion			ESD Conversion	
US_dec = $\left(\frac{180}{4294967294} * LS_int\right)$			$ESD_{dec} = \left(\frac{180}{4294967294} * LS_{int}\right)$		
<u>To US:</u>			To ESD:		
- US = (double) (180/0xFFFFFFFE * LS)			- Convert LS to decimal.		
<u>To LS:</u>	1.0	00 1	- Convert decim	al to ASCII.	
- LS = $(int32)r$	ound(0xFFFFFFFE/1	80 * US)	To LS:		
			- Convert ASCII - Map decimal t		
			Map decimal (.0 111602.	

8.23.1 Example Frame Center Latitude

The center of the captured image or image sequence has a real earth coordinate represented by a latitude-longitude-altitude triplet. Frame centers that lie above the horizon typically do not correspond to a point on the earth (an example being the tracking of an airborne object) and should either not be reported, or be reported as an "error".

Note that the int32 used in the LS value is encoded using two's complement.

8.24 Tag 24: Frame Center Longitude Conversion

LS Tag	24		Units	Range	Format	
LS Name	Frame Center Lor	gitude	Degrees	+/- 180	int32	
US Mapped	Use EG0104 US Ke	ΣΥ				
Key						
Notes			Conversion Form	nula		
- Terrain Long on WGS84 ell	ritude of frame ce .ipsoid.	nter. Based	LS_dec =	$\left(\frac{\text{LS range}}{\text{int range}} * \text{L}\right)$	S_int)	
- Map -(2^31-1) (2^31-1) to +/	-180.		, 360		
	as an "error" ind	icator.	LS_24_dec	$= \left(\frac{360}{4294967294}\right)^{-1}$	* LS_24)	
$-(2^31) = 0x$						
	~84 nano degrees.	E 1105				
Example Value		Example LS Pag		00 001		
29.157890122923	06 0E 2B 34 01		124][0d4][0x14 BC	U8 2B]		
US Key	06 0E 2B 34 01 07 01 02 01 03		ESD Digraph	10		
US Name	Frame Center Lor	gitude	ESD Name	Target Longitude	е	
Units	Range	Format	Units	Range	Format	
Degrees	+/- 180	Double	Degrees	+/- 180.00	PDDDMMSST	
Notes			Notes			
geographic l longitude. - Positive val	e video frame cen ocation in decima ues indicate east	l degrees of	the ground.	the EO/IR payloa + Means East lon ordinates use WGS	gitude. All	
hemisphere.						
hemisphere.	ues indicate west	ern				
	US Conversion			ESD Conversion		
$US_dec = \left(\frac{360}{4294967294} * LS_int\right)$			$ESD_{dec} = \left(\frac{360}{4294967294} * LS_{int}\right)$			
<u>To US:</u>			<u>To ESD:</u>			
- US = (double) (360/0xFFFFFFFE * LS)			- Convert LS to decimal Convert decimal to ASCII.			
<u>To LS:</u>				al to ASCII.		
- LS = (int32)r	cound(0xFFFFFFFE/3	60 * US)	<u>To LS:</u> - Convert ASCII			
			- Convert ASCII - Map decimal t			
			- Map decidal t	O IIIUJZ.		

8.24.1 Example Frame Center Longitude

The center of the captured image or image sequence has a real earth coordinate represented by a latitude-longitude-altitude triplet. Frame centers that lie above the horizon typically do not correspond to a point on the earth (an example being the tracking of an airborne object) and should either not be reported, or be reported as an "error".

Note that the int32 used in the LS value is encoded using two's complement.

8.25 Tag 25: Frame Center Elevation Conversion

LS Tag	25		Units	Range	Format	
LS Name	Frame Center E	Levation	Meters	-90019000	uint16	
US Mapped	06 OE 2B 34 01					
Key	07 01 02 01 03	3 16 00 00				
Notes			Conversion Form	nula		
	vation at frame Mean Sea Level		LS_dec = (-	LS range * LS_uir	nt) -Offset	
- Map 0(2^1 - Resolution:	6-1) to -90019 ~0.3 meters.	000 meters.	LS_25_dec	$= \left(\frac{19900}{65535} * LS_25\right)$) - 900	
Example Value		Example LS Pa	cket			
3216.037 Meter	s	[K][L][V] = [0c]	d25][0d2][0x34 F3]		
US Key	Х		ESD Digraph	Te		
US Name	Х		ESD Name	Frame Center Elev	ration	
Units	Range	Format	Units	Range	Format	
Х	X	X	Feet	+/- 099,999	PN	
Notes			Notes			
- X			- Terrain elevation at frame center.			
	US Conversion			ESD Conversion		
<u>To US:</u>	Х		$ESD_dec = \left(\frac{1}{6}\right)$	9900 5535*LS_uint-900)	*3.2808399ft 1m	
- x			To ESD:			
To LS:			- Convert LS to decimal.			
- x			- Account for units.			
			- Convert decim	al to ASCII.		
			<u>To LS:</u>			
				SCII to decimal.		
			- Account for u			
			- Map decimal t	o uint16.		

8.25.1 Example Frame Center Elevation

For legacy purposes, both MSL (Tag 25) and HAE (Tag 78) representations of Frame Center Elevation MAY appear in the same ST 0601 packet. A single representation is preferred favoring the HAE version (Tag 78).

The center of the captured image or image sequence has a real earth coordinate represented by a latitude-longitude-altitude triplet. Frame centers that lie above the horizon typically do not correspond to a point on the earth (an example being the tracking of an airborne object) and should either not be reported, or be reported as an "error".

The altitude is represented as height above mean sea level (MSL).

8.26 Tag 26: Offset Corner Latitude Point 1 Conversion

LS Tag LS Name	26 Offset Corner I	Latitude Point	Units Degrees	Range +/-0.075	Format
	1 Use EG0104 US F	(AV			
US Mapped Key		ic y			
Notes			Conversion Form	nula	
	de, offset for uped on WGS84 elli	• •	LS dec = $\left(\frac{1}{3}\right)$	LS range nt range*LS_int)	+LS 23 dec
	me Center Latitud		•		
<u> </u>)(2^15-1) to +,		LS_26_dec =	$\left(\frac{0.15}{65534} * LS_26\right)$	+ LS_23_dec
' '	as an "error" ind	dicator.			
(2^15) = 0x8	8000. ~1.2micro deg, ~() 25meters at			
equator.	1.2micro deg,	3.23mccc15 ac			
Example Value		Example LS Pa			
-10.57963799988 Degrees	7 Corrected	[K][L][V] = [0c	126][0d2][0xC0 6E]	
US Key	06 0E 2B 34 01 07 01 02 01 03		ESD Digraph	Rg	
US Name	Corner Latitude (Decimal Degree		ESD Name	SAR Latitude 4	
Units	Range	Format	Units	Range	Format
Degrees	+/- 90	Double	Degrees	+/- 90.00	PDDMMSST
Notes	. 1	. 1 . 6	Notes	. C	
or bounding i	rdinate of corne: rectangle.	r 1 of an 1mage	- The latitude SAR image box	of the upper left .	corner of the
_	is northern hem:	isphere.			
- Negative (-)	is southern hem:	isphere.			
	US Conversion			ESD Conversion	
$US_{dec} = \left(\frac{0.15}{65534} * LS_{int}\right) + LS_{23_{dec}}$			ESD_dec =	$\left(\frac{0.15}{65534}$ *LS_int $\right)$ +	LS_23_dec
<u>To US:</u>			To ESD:		
- US = (double)((0.15/0xFFFE * LS) +			- Convert LS to		
LS_23_dec)			- Convert decimal to ASCII.		
<u>To LS:</u>	ound(0xFFFE/0.15	* /IIC	<u>To LS:</u> - Convert ASCII	±- d11	
- LS = (Intlb)rd Frame Center I	•	. (05 -			
	. ,		- Map decimal to int16.		

8.26.1 Example Corner Latitude Point 1

The corner points of the captured image or image sequence have a real earth coordinate represented by a latitude-longitude pair (Figure 8-12). Corner points that lie above the horizon typically do not correspond to a point on the earth, or corner points lying outside of the mapped range should either not be reported, or be reported as an "error".

Corner point 1 is the upper left corner of the captured image as highlighted in red.

Figure 8-12: Offset Corner Point 1

The Offset Corner Latitude Point 1 is added to the Frame Center Latitude metadata item to determine the Latitude of the first corner point of a motion image. Both KLV data items must be converted to decimal prior to addition to determine the actual measured or calculated Motion Imagery corner point. Value is encoded using two's complement.

8.27 Tag 27: Offset Corner Longitude Point 1 Conversion

LS Tag	27		Units	Range	Format
LS Name	Offset Corner I	ongitude Point	Degrees	+/-0.075	int16
LIC Mannad	1 Use EG0104 US F				
US Mapped Key	030 100104 05 1	Су			
Notes			Conversion Form	mula	
	ıde, offset for u	ipper left			
	ed on WGS84 ellig		$LS_dec = $	LS range int_range*LS_int)	+LS_24_dec
	me Center Longitu		19 27 dog -	$\left(\frac{0.15}{65534} * Ls_{27}\right)$	+ TC 24 dog
<u> </u>)(2^15-1) to +, as an "error" ind		13_27_dec =	(65534 " 13_27)	+ L5_24_dec
$-(2^15) = 0x8$.100001.			
	~1.2micro deg, ~(.25meters at			
equator.		Example LS Pa	okot		
Example Value 29.1273677986333	3 Corrected		cket 127][0d2][0xCB E	91	
Degrees		[][-][-]	,[[0.0.2],[0.0.02]	- 1	
US Key	06 0E 2B 34 01 07 01 02 01 03	01 01 03	ESD Digraph	Rh	
LIO Nove	Corner Longitud		·	SAR Longitude 4	
US Name	(Decimal Degree		ESD Name		
Units	Range	Format	Units	Range	Format
Degrees Notes	+/- 180	Double	Degrees Notes	+/- 180.00	PDDDMMSST
	ordinate of corne	r 1 of an		e of the upper lef	t corner of
_	nding rectangle.		the SAR image		
	is eastern hemis	=			
- Negative (-)	is western hemis	sphere.		ESD Conversion	
			,		
$US_dec = \left(\frac{0}{65}\right)$	5534 * LS_int)	+ LS_24_dec	ESD_dec = (0.15 65534 * LS_int)	+ LS_24_dec
To US:			To ESD:		
- US = (double)((0.15/0xFFFE * LS) + LS 24 dec)			- Convert LS to decimal Convert decimal to ASCII.		
To LS:			- Convert decin	mai to ASCII.	
	ound(0xFFFE/0.15	* (US -	- Convert ASCII	I to decimal.	
Frame_Center_I		•	- Map decimal t		

8.27.1 Example Corner Longitude Point 1

The corner points of the captured image or image sequence have a real earth coordinate represented by a latitude-longitude pair. Corner points that lie above the horizon typically do not correspond to a point on the earth, or corner points lying outside of the mapped range, should either not be reported, or be reported as an "error".

Corner point 1 is the upper left corner of the captured image. See Figure 8-12 for Tag 26 above.

The Offset Corner Longitude Point 1 is added to the Frame Center Longitude metadata item to determine the Longitude of the first corner point of a motion image. Both KLV data items must be converted to decimal prior to addition to determine the actual measured or calculated Motion Imagery corner point. Value is encoded using two's complement.

8.28 Tag 28: Offset Corner Latitude Point 2 Conversion

LS Tag LS Name	28 Offset Corner I	atitude Point	Units Degrees	Range +/-0.075	Format
US Mapped Key	2 Use EG0104 US F	čey			
Notes			Conversion Form	nula	
- Frame Latitude, offset for upper right corner. Based on WGS84 ellipsoid Use with Frame Center Latitude.			•	LS range nt_range*LS_int) (0.15/65534 * LS_28)	
- Map -(2^15-1)(2^15-1) to +/-0.075. - Use -(2^15) as an "error" indicator. (2^15) = 0x8000. - Resolution: ~1.2micro deg, ~0.25meters at equator.				(65554 —)	
Example Value		Example LS Pa	cket		
			d28][0d2][0xD7 65]	
US Key	07 01 02 01 03		ESD Digraph	Ra	
US Name	Corner Latitude (Decimal Degree		ESD Name	SAR Latitude 1	
Units	Range	Format	Units	Range	Format
Degrees	+/- 90	Double	Degrees	+/- 90.00	PDDMMSST
Notes			Notes		
- Latitude cooperation or bounding in	rdinate of corner rectangle.	2 of an image	- The latitude the SAR image	of the upper righ box.	t corner of
- Positive (+)	is northern hem	sphere.	3		
- Negative (-)	is southern hem	sphere.			
US Conversion			ESD Conversion		
$US_{dec} = \left(\frac{0.15}{65534} * LS_{int}\right) + LS_{23_{dec}}$			$ESD_dec = \left(\frac{0.15}{65534} * LS_int\right) + LS_23_dec$		
<u>To US:</u>			To ESD:		
- US = (double)((0.15/0xFFFE * LS) +			- Convert LS to decimal.		
LS_23_dec)			- Convert decimal to ASCII.		
To LS:			<u>To LS:</u>		
, , ,	ound(0xFFFE/0.15	* (US -	- Convert ASCII		
Frame_Center_:	TWI)		- Map decimal t	o intl6.	

8.28.1 Example Corner Latitude Point 2

The corner points of the captured image or image sequence have a real earth coordinate represented by a latitude-longitude pair. Corner points that lie above the horizon typically do not correspond to a point on the earth, or corner points lying outside of the mapped range, should either not be reported, or be reported as an "error".

Corner point 2 is the upper right corner of the captured image as highlighted in red (Figure 8-13).

Figure 8-13: Offset Corner Point 2

The Offset Corner Latitude Point 2 is added to the Frame Center Latitude metadata item to determine the Latitude of the second corner point of a motion image. Both KLV data items must be converted to decimal prior to addition to determine the actual measured or calculated Motion Imagery corner point. Value is encoded using two's complement.

8.29 Tag 29: Offset Corner Longitude Point 2 Conversion

LS Tag LS Name	29 Offset Corner I	ongitude Point	Units Degrees	Range +/-0.075	Format int16
US Mapped Key	2 Use EG0104 US F	Key			
Notes			Conversion Form	nula	
- Frame Longitude, offset for upper right corner. Based on WGS84 ellipsoid Use with Frame Center Longitude Map -(2^15-1)(2^15-1) to +/-0.075.			•	$\frac{\text{LS range}}{\text{int_range}} * \text{LS_int}$ $\left(\frac{0.15}{65534} * \text{LS_29}\right)$	
 Use -(2¹⁵) as an "error" indicator. -(2¹⁵) = 0x8000. Resolution: ~1.2micro deg, ~0.25meters at equator. 					
Example Value			cket 129][0d2][0xE2 E0)]	
US Key	06 0E 2B 34 01 07 01 02 01 03 Corner Longitud	3 OC 01 00	ESD Digraph	Rb SAR Longitude 1	
US Name	(Decimal Degree		ESD Name		
Units	Range	Format	Units	Range	Format
Degrees	+/- 180	Double	Degrees Notes	+/- 180.00	PDDDMMSST
- Longitude cod	Notes - Longitude coordinate of corner 2 of an image or bounding rectangle Positive (+) is eastern hemisphere.			of the upper rige box.	ht corner of
US Conversion			ESD Conversion		
$US_{dec} = \left(\frac{0.15}{65534} * LS_{int}\right) + LS_{24_{dec}}$			$ESD_{dec} = \left(\frac{0.15}{65534} * LS_{int}\right) + LS_{24_{dec}}$		
To US: - US = (double) ((0.15/0xFFFE * LS) + LS_24_dec) To LS: - LS = (int16) round(0xFFFE/0.15 * (US -			To ESD: - Convert LS to - Convert decim To LS: - Convert ASCII	al to ASCII.	
Frame_Center_	LON))		- Map decimal t	o int16.	

8.29.1 Example Corner Longitude Point 2

The corner points of the captured image or image sequence have a real earth coordinate represented by a latitude-longitude pair. Corner points that lie above the horizon typically do not correspond to a point on the earth, or corner points lying outside of the mapped range, should either not be reported, or be reported as an "error".

Corner point 2 is the upper right corner of the captured image. See Figure 8-13 for Tag 28 above.

The Offset Corner Longitude Point 2 is added to the Frame Center Longitude metadata item to determine the Longitude of the second corner point of a motion image. Both KLV data items must be converted to decimal prior to addition to determine the actual measured or calculated Motion Imagery corner point. Value is encoded using two's complement.

8.30 Tag 30: Offset Corner Latitude Point 3 Conversion

LS Tag	30		Units	Range	Format
LS Name	Offset Corner L	atitude Point	Degrees	+/-0.075	int16
	3				
US Mapped	Use EG0104 US K	ey			
Key					
Notes			Conversion Form	nula	
	de, offset for lo ed on WGS84 ellip	_	$LS_dec = \left(\frac{1}{i}\right)$	LS range nt_range*LS_int)	+LS_23_dec
	me Center Latitud			, 0.15	
±	$)(2^15-1)$ to +/		LS_30_dec =	$\left(\frac{0.15}{65534} * LS_{30}\right)$	+ LS_23_dec
	as an "error" ind	icator.			
$-(2^15) = 0x8$		25			
- Resolution:	~1.2micro deg, ~0	.25meters at			
Example Value		Example LS Pa	cket		
			d30][0d2][0xEE 5B	1	
Degrees				•	
US Key	06 0E 2B 34 01 07 01 02 01 03		ESD Digraph	Rc	
LIO NI	Corner Latitude		EOD Nove	SAR Latitude 2	
US Name	(Decimal Degree	s)	ESD Name		
Units	Range	Format	Units	Range	Format
Degrees	+/- 90	Double	Degrees	+/- 90.00	PDDMMSST
Notes			Notes		
	rdinate of corner	3 of an image	- The latitude of the lower right corner of		
or bounding i	_		the SAR image	box.	
	is northern hemi				
- Negacive ()	- Negative (-) is southern hemisphere. US Conversion			ESD Conversion	
			,		
$US_{dec} = \left(\frac{0.15}{65534} * LS_{int}\right) + LS_{23_{dec}}$			ESD_dec = (0.15 65534 * LS_int)	+ LS_23_dec
<u>To US:</u>			To ESD:		
- US = (double)((0.15/0xFFFE * LS) +			- Convert LS to		
LS_23_dec)			- Convert decimal to ASCII.		
<u>To LS:</u>			<u>To LS:</u>		
	ound(0xFFFE/0.15	* (US -	- Convert ASCII		
Frame_Center_1	LA'I'))		- Map decimal to int16.		

8.30.1 Example Corner Latitude Point 3

The corner points of the captured image or image sequence have a real earth coordinate represented by a latitude-longitude pair. Corner points that lie above the horizon typically do not correspond to a point on the earth, or corner points lying outside of the mapped range, should either not be reported, or be reported as an "error".

Corner point 3 is the lower right corner of the captured image as highlighted in red (see Figure 8-14).

Figure 8-14: Offset Corner Point 3

The Offset Corner Latitude Point 3 is added to the Frame Center Latitude metadata item to determine the Latitude of the third corner point of a motion image. Both KLV data items must be converted to decimal prior to addition to determine the actual measured or calculated Motion Imagery corner point. Value is encoded using two's complement.

8.31 Tag 31: Offset Corner Longitude Point 3 Conversion

LS Tag	31		Units	Range	Format
LS Name	Offset Corner I	ongitude Point	Degrees	+/-0.075	int16
US Mapped	Use EG0104 US F	Tey			
Key					
Notes			Conversion Form	nula	
corner. Base	ade, offset for i ed on WGS84 ellig	osoid.	$LS_dec = \left(\frac{1}{i}\right)$	LS range nt_range*LS_int)	+LS_24_dec
	ne Center Longitu		TC 31 dog -	$\left(\frac{0.15}{65534} * LS_{31}\right)$	+ TC 24 dog
± :	(2^15-1) to +, as an "error" ind		15_51_dec -	(65534 15_51)	1 TD_24_dec
$-(2^15) = 0x8$					
- Resolution: ~1.2micro deg, ~0.25meters at equator.					
Example Value		Example LS Pa			
29.1542782573265 Degrees	5 Corrected	[K][L][V] = [0d	d31][0d2][0xF9 D6]	
US Key	06 0E 2B 34 01 07 01 02 01 03	0D 01 00	ESD Digraph	Rd	
US Name	Corner Longitud (Decimal Degree		ESD Name	SAR Longitude 2	
Units	Range	Format	Units	Range	Format
Degrees	+/- 180	Double	Degrees	+/- 180.00	PDDDMMSST
Notes - Longitude cod	ordinate of corne	er 3 of an	Notes - The longitude	of the lower rig	ht corner of
	nding rectangle.		the SAR image	box.	
	is eastern hemis	•			
- Negative (-)	is western hemis	sphere.		ESD Conversion	
US Conversion					
$US_dec = \left(\frac{0}{65}\right)$.15 5534 * LS_int)	+ LS_24_dec	$ESD_dec = \left(\frac{1}{6}\right)$	0.15 65534 * LS_int)	+ LS_24_dec
<u>To US:</u>			To ESD:		
- US = (double)((0.15/0xFFFE * LS) + LS 24 dec)			- Convert LS to decimal Convert decimal to ASCII.		
To LS:			To LS:	at to Abtil.	
	ound(0xFFFE/0.15	* (US -	- Convert ASCII	to decimal.	
Frame_Center_I		•	- Map decimal t		

8.31.1 Example Corner Longitude Point 3

The corner points of the captured image or image sequence have a real earth coordinate represented by a latitude-longitude pair. Corner points that lie above the horizon typically do not correspond to a point on the earth, or corner points lying outside of the mapped range, should either not be reported, or be reported as an "error".

Corner point 3 is the lower right corner of the captured image. See Figure 8-14 for Tag 30 above.

The Offset Corner Longitude Point 3 is added to the Frame Center Longitude metadata item to determine the Longitude of the third corner point of a motion image. Both KLV data items must be converted to decimal prior to addition to determine the actual measured or calculated Motion Imagery corner point. Value is encoded using two's complement.

8.32 Tag 32: Offset Corner Latitude Point 4 Conversion

LS Tag LS Name	32 Offset Corner I	atitude Point	Units Degrees	Range +/-0.075	Format
	4				
US Mapped	Use EG0104 US F	.ey			
Key Notes			Conversion Form	nulo.	
	de, offset for lo				
	de, offset for it ed on WGS84 ellig		$LS_dec = \left(\frac{1}{i}\right)$	S range *LS_int)	+LS_23_dec
- Use with Fram	me Center Latitud	le.	•	_ · · · · · · · · · · · · · · · · · · ·	
- Map -(2^15-1)) (2^15-1) to +/	/-0.075.	$LS_32_dec =$	$\left(\frac{0.15}{65534} * LS_{32}\right)$	+ LS_23_dec
` '	as an "error" ind	dicator.			
$-(2^15) = 0x$					
- Resolution:	~1.2micro deg, ~().25meters at			
Example Value		Example LS Pa	ckat		
-10.53927116740	31 Corrected		i32][0d2][0x05 52	1	
Degrees		[][-][-]		,	
US Key		01 01 03	ESD Digraph	Re	
oo noy	07 01 02 01 03 Corner Latitude			SAR Latitude 3	
US Name	(Decimal Degree		ESD Name	SAR Latitude 3	
Units	Range	Format	Units	Range	Format
Degrees	+/- 90	Double	Degrees	+/- 90.00	PDDMMSST
Notes			Notes		
- Latitude coop or bounding :	rdinate of corner	4 of an image	- The latitude SAR image box	of the lower left	corner of the
_	is northern hemi	sphere.	Dint image bon	•	
	is southern hemi				
US Conversion			ESD Conversion		
$US_{dec} = \left(\frac{0.15}{65534} * LS_{int}\right) + LS_{23_{dec}}$			$ESD_dec = (\frac{1}{6})$	0.15 55534 * LS_int)	+ LS_23_dec
<u>To US:</u>			To ESD:		
- US = $(double)((0.15/0xFFFE * LS) +$			- Convert LS to decimal.		
LS_23_dec)			- Convert decimal to ASCII.		
To LS:			<u>To LS:</u>		
, , ,	ound(0xFFFE/0.15	* (US -	- Convert ASCII		
Frame_Center_	LAT))		- Map decimal t	o int16.	

8.32.1 Example Corner Latitude Point 4

The corner points of the captured image or image sequence have a real earth coordinate represented by a latitude-longitude pair. Corner points that lie above the horizon typically do not correspond to a point on the earth, or corner points lying outside of the mapped range, should either not be reported, or be reported as an "error".

Corner point 4 is the lower left corner of the captured image as highlighted in red (see Figure 8-15).

Figure 8-15: Offset Corner Point 4

The Offset Corner Latitude Point 4 is added to the Frame Center Latitude metadata item to determine the Latitude of the fourth corner point of a motion image. Both KLV data items must be converted to decimal prior to addition to determine the actual measured or calculated Motion Imagery corner point. Value is encoded using two's complement.

8.33 Tag 33: Offset Corner Longitude Point 4 Conversion

LS Tag LS Name	33 Offset Corner I	ongitude Point	Units Degrees	Range +/-0.075	Format int16
US Mapped Key	4 Use EG0104 US F	Геу			
Notes			Conversion Forn	nula	
- Frame Longitude, offset for lower left corner. Based on WGS84 ellipsoid Use with Frame Center Longitude.			•	$\frac{\text{LS range}}{\text{nt_range}} * \text{LS_int}$ $\left(\frac{0.15}{65534} * \text{LS_33}\right)$	
- Map -(2^15-1)(2^15-1) to +/-0.075. - Use -(2^15) as an "error" indicator. (2^15) = 0x8000. - Resolution: ~1.2micro deg, ~0.25meters at			15_33_dec -	(65534 ES_33)	1 15_24_dec
equator.					
Example Value			cket 133][0d2][0x10 CD)]	
US Key	07 01 02 01 03		ESD Digraph	Rf	
US Name	Corner Longitud (Decimal Degree		ESD Name SAR Longitude 3		
Units	Range	Format	Units	Range	Format
Degrees	+/- 180	Double	Degrees	+/- 180.00	PDDDMMSST
Notes			Notes		
image or bour	ordinate of corne nding rectangle.		- The longitude of the lower left corner of the SAR image box.		
	is eastern hemis				
- Negative (-)	is western hemis	sphere.		CCD Commercian	
US Conversion			ESD Conversion		
$US_dec = \left(\frac{0}{6!}\right)$	0.15 5534 * LS_int)	+ LS_24_dec	ESD_dec = (0.15 65534 * LS_int)	+ LS_24_dec
<u>To US:</u> - US = (double)((0.15/0xFFFE * LS) + LS_24_dec)			To ESD: - Convert LS to - Convert decim		
To LS: - LS = (int16)rd Frame_Center_1	ound(0xFFFE/0.15 LON))	* (US -	To LS: - Convert ASCII - Map decimal t		

8.33.1 Example Corner Longitude Point 4

The corner points of the captured image or image sequence have a real earth coordinate represented by a latitude-longitude pair. Corner points that lie above the horizon typically do not correspond to a point on the earth, or corner points lying outside of the mapped range, should either not be reported, or be reported as an "error".

Corner point 4 is the lower left corner of the captured image. See Figure 8-15 for Key 32 above.

The Offset Corner Longitude Point 4 is added to the Frame Center Longitude metadata item to determine the Longitude of the fourth corner point of a motion image. Both KLV data items must be converted to decimal prior to addition to determine the actual measured or calculated Motion Imagery corner point. Value is encoded using two's complement.

8.34 Tag 34: Icing Detected Conversion

LS Tag	34		Units	Range	Format
LS Name	Icing Detected		Icing Code	0255	uint8
US Mapped	06 OE 2B 34 O1				
Key	0E 01 01 01 0C	00 00 00			
Notes			Conversion Forr	mula	
	ng detected at a	ircraft		Х	
location.	5.5			X	
- 0: Detector					
- 1: No icing - 2: Icing Det					
Example Value	Lected	Example LS Pac	rkat		
Invalid Icing (rode	[K][L][V] = [0d]			
US Key	x	[11][1][1] [00	ESD Digraph	Td	
	×		ESD Digraph ESD Name	Icing Detected	
US Name		F ,			- ,
Units	Range	Format	Units	Range	Format
X	X	X	Icing Code	02	N
Notes			Notes		
- X			- Output of the aircrafts icing detector		
			- 0: Detector off		
			- 1: No icing detected		
	110 0		- 2: Icing dete		
US Conversion			ESD Conversion		
	X			X	
<u>To US:</u>			To ESD:		
- x			- Convert string to ID code.		
<u>To LS:</u>			<u>To LS:</u>		
- x			- Convert ID co	ode to string.	

8.34.1 Example Icing Detected

This metadata item signals when the icing sensor detects water forming on its vibrating probe.

8.35 Tag 35: Wind Direction Conversion

LS Tag	35		Units	Range	Format	
LS Name	Wind Direction 06 0E 2B 34 01	01 01 01	Degrees	0360	uint16	
US Mapped	06 0E 2B 34 01 0E 01 01 01 0D					
Key	1					
Notes			Conversion Form	nula		
	ion at aircraft letion the wind is		LS_dec =	$\left(\frac{\text{LS range}}{\text{uint_range}} * I\right)$	S_uint)	
- Map 0(2^16	6-1) to 0360. ~5.5 milli degre	es.	LS_35_d	$lec = \left(\frac{360}{65535} * I\right)$.s_35)	
Example Value Example LS Page			cket			
			35][0d2][0xA7 C4]		
US Key	Х		ESD Digraph	Wd		
US Name	Х		ESD Name	Wind Direction		
Units	Range	Format	Units	Range	Format	
Х	X	Х	Degrees	0359	DDD	
Notes			Notes			
- x			- Direction (from North) from which the wind is blowing at the aircraft location			
	US Conversion		ESD Conversion			
х <u>То US:</u>			$ESD_dec = \left(\frac{360}{65534} * LS_uint\right)$			
- x			To ESD:			
<u>To LS:</u>			- Convert LS to decimal.			
- x			- Convert decimal to ASCII.			
			<u>To LS:</u>			
			- Convert ESD A	SCII to decimal.		
			- Map decimal t	o uint16.		

8.35.1 Example Wind Direction

The direction the air body around the aircraft is coming from relative to true north.

8.36 Tag 36: Wind Speed Conversion

LS Tag LS Name	36 Wind Speed		Units Meters/Second	Range 0100	Format uint8	
US Mapped Key	06 0E 2B 34 01 0E 01 01 01 0E					
Notes			Conversion Form	nula		
- Map 0255	at aircraft locat to 0100 meters,		LS_dec =	$\left(\frac{\text{LS range}}{\text{uint_range}} * I\right)$	S_uint)	
	4384449 knots. ~0.4 meters / se	econd.	LS_36_	$dec = \left(\frac{100}{255} * LS\right)$	s_36)	
Example Value		Example LS Page				
69.80392 m/s		[K][L][V] = [0c]				
US Key	X		ESD Digraph	Ws		
US Name	Х		ESD Name	Wind Speed		
Units	Range	Format	Units	Range	Format	
Х	X	X	Knots	099	NN	
Notes			Notes			
- x			 Wind Speed (relative to the Earth) at the aircraft location. 			
	US Conversion		ESD Conversion			
<u>To US:</u>	Х		$ESD_dec = \left(\frac{10}{25}\right)$	00 55*LS_uint) *1.9	4384449knots 1m/s	
- X			To ESD:			
<u>To LS:</u>			- Convert LS to decimal.			
- x			- Account for units.			
			- Convert knots to ASCII.			
			<u>To LS:</u>			
			- Convert ESD ASCII to decimal.			
			- Account for u			
			- Convert meters to uint8.			

8.36.1 Example Wind Speed

The speed of the body of air that surrounds the aircraft relative to the ground is captured in this wind speed metadata item.

8.37 Tag 37: Static Pressure Conversion

LS Tag	37		Units	Range	Format	
LS Name	Static Pressure	9	Millibar	05000	uint16	
US Mapped	06 OE 2B 34 O					
Key	0E 01 01 01 01	· 00 00 00				
Notes			Conversion Form	nula		
	sure at aircraft 6-1) to 05000		LS_dec =	$\left(\frac{\text{LS range}}{\text{uint_range}} * \text{LS}\right)$	S_uint)	
	0145037738 PSI. ~0.08 Millibar		LS_37_c	$lec = \left(\frac{5000}{65535} * LS\right)$	3_37)	
Example Value		Example LS Pa	cket			
3725.185 mbar		[K][L][V] = [0c]	d37][0d2][0xBE BA]		
US Key	X		ESD Digraph	Ps		
US Name	Х		ESD Name	Static Pressure		
Units	Range	Format	Units	Range	Format	
X	Х	X	PSI	099.99	DD.HH	
Notes			Notes			
- X			- Static Pressu	·		
	US Conversion		ESD Conversion			
<u>To US:</u>	Х		$ESD_dec = \left(\frac{5}{6!}\right)$	000 5535*LS_uint) *	0145037738PSI 1mbar	
- X			To ESD:			
<u>To LS:</u>			- Convert LS to decimal.			
- X			- Convert decimal to ASCII.			
			To LS:			
			- Convert ESD A	SCII to decimal.		
			- Map decimal to	o uint16.		

8.37.1 Example Static Pressure

The static pressure is the pressure of the air that surrounds the aircraft. Static pressure is measured by a sensor mounted out of the air stream on the side of the fuselage. This is used with impact pressure to compute indicated airspeed, true airspeed, and density altitude.

8.38 Tag 38: Density Altitude Conversion

38		Units	Range	Format			
Density Altitud	le	Meters	-90019000	uint16			
OE 01 01 01 10	00 00 00						
		Conversion Form	nula				
		Is dos - / Li	S range * IS wint	\ - Offsot			
-		uis_dec - (ui	nt_range "LS_uille) - Oliset			
*	ature, Static	LS 38 dec	$= \left(\frac{19900}{65525} * Is 38\right)$) - 900			
_	000 meters.		(65535	,			
	F	.1 .4					
			1				
	[V][T][V] - [OC						
l							
	Гожнось			Голина			
		C. I.I.C.		Format			
Α	Α		17 33,333	1 14			
			ude of the aircraft				
US Conversion		-					
Х		, /1	9900.	3.2808399ft			
		$ESD_dec = \sqrt{6}$	5535*LS_uint-900) ?	1m			
		To ESD:					
<u>To LS:</u>			- Convert LS to decimal.				
- x			- Account for units.				
			al to ASCII.				
			<u>To LS:</u>				
		- ACCOUNT FOR U.	HILLS.				
	Density Altitude 06 0E 2B 34 01 0E 01 01 01 10 itude at aircraft recraft performants ide air temperand humidity. 6-1) to -90019 002808399 feet. ~0.3 meters. Range x US Conversion	Density Altitude 06 0E 2B 34 01 01 01 01 0E 01 01 01 10 00 00 00 itude at aircraft location. rcraft performance metric tside air temperature, static nd humidity. 6-1) to -90019000 meters. 002808399 feet. ~0.3 meters. Example LS Pa S [K][L][V] = [00] X X X Range Format X US Conversion	Density Altitude 06 0E 2B 34 01 01 01 01 0E 01 01 01 10 00 00 00 Conversion Form itude at aircraft location. rcraft performance metric tside air temperature, static and humidity. 6-1) to -90019000 meters. 00. .2808399 feet. ~0.3 meters. Example LS Packet S [K][L][V] = [0d38][0d2][0xCA 35 X X X ESD Digraph ESD Name Range Format X ESD Digraph ESD Name Units Feet Notes - Density Altiti US Conversion X ESD_dec = (1/2) 6 To ESD: - Convert LS to - Account for us - Convert decime To LS: - Convert ESD As	Density Altitude 06 0E 2B 34 01 01 01 01 0E 01 01 01 10 00 00 00 Conversion Formula			

8.38.1 Example Density Altitude

Density altitude is the pressure altitude corrected for non-standard temperature variation. Density altitude is a relative metric of the takeoff, climb, and other performance related parameters of an aircraft.

8.39 Tag 39: Outside Air Temperature Conversion

LS Tag	39		Units	Range	Format
LS Name	Outside Air Tem	perature	Celcius	-128+127	int8
US Mapped	06 OE 2B 34 O1	01 01 01			
Key	OE 01 01 01 11	00 00 00			
Notes			Conversion Form	mula	
- Temperature	outside of aircr	aft.		LS_dec = LS_int	
128127 De	egrees Celsius.			$LS_39_dec = LS_39$	
- Resolution:	1 degree celsius				
Example Value Example LS Page			ket		
84 Celcius		[K][L][V] = [0d			
US Key	Х		ESD Digraph	At	
US Name	х		ESD Name	Air Temperature	
Units	Range	Format	Units	Range	Format
Х	X	X	Celcius	+/- 99	PDD
Notes			Notes		
- x			- Outside air t aircraft	emperature measure	ed at the
US Conversion			ESD Conversion		
х			ESD_dec = LS_int		
<u>To US:</u>			To ESD:		
- x			- Convert int8 to string.		
To LS:			<u>To LS:</u>		
- X			- Convert strin	ng to int8.	

8.39.1 Example Outside Air Temperature

The measured temperature outside of the platform is captured in the outside air temperature metadata item.

Note that the value is encoded using two's complement.

8.40 Tag 40: Target Location Latitude Conversion

LS Tag	40		Units	Range	Format
LS Name	Target Location	Latitude	Degrees	+/- 90	int32
US Mapped	06 0E 2B 34 01				
Key	OE 01 01 03 02	00 00 00			
Notes			Conversion Form	nula	
- Calculated Target latitude. This is the crosshair location if different from frame center. - Based on WGS84 ellipsoid. - Map -(2^31-1)(2^31-1) to +/-90. - Use -(2^31) as an "error" indicator. (2^31) = 0x80000000. - Resolution: ~42 nano degrees.			$\left(\frac{\text{LS range}}{\text{int_range}} * L\right)$ $= \left(\frac{180}{4294967294}\right)$	•	
Example Value Example LS Packet					
-79.16385005189	29 Degrees	[K][L][V] = [0c]	d40][0d4][0x8F 69	52 62]	

8.40.1 Example Target Location Latitude

The crosshair or target location of a captured image or image sequence has a real earth coordinate represented by a latitude-longitude-elevation triplet and may differ from the center of the captured image. Target locations that lie above the horizon do not correspond to a point on the earth and should either not be reported, or be reported as an "error".

Note that the int32 used in the LS value is encoded using two's complement.

8.41 Tag 41: Target Location Longitude Conversion

LS Tag	41	Units	Range	Format
LS Name	Target Location Longitude	Degrees	+/-180	int32
US Mapped	06 0E 2B 34 01 01 01 01			
Key	0E 01 01 03 03 00 00 00			
Notes		Conversion For	rmula	
- Calculated Target longitude. This is the crosshair location if different from frame center. - Based on WGS84 ellipsoid. - Map -(2^31-1)(2^31-1) to +/-180. - Use -(2^31) as an "error" indicator. - (2^31) = 0x80000000. - Resolution: ~84 nano degrees.		$LS_dec = \left(\frac{LS \text{ range}}{int_range} * LS_int\right)$ $LS_41_dec = \left(\frac{360}{4294967294} * LS_41\right)$		ŕ
Example Value	Example LS Packet			
166.40081296041	[K][L][V] = [0d41][0d4][0x76 54 57 F2]			
Degrees				

8.41.1 Example Target Location Longitude

The crosshair or target location of a captured image or image sequence has a real earth coordinate represented by a latitude-longitude-elevation triplet and may differ from the center of the captured image. Target locations that lie above the horizon do not correspond to a point on the earth and should either not be reported, or be reported as an "error".

Note that the int32 used in the LS value is encoded using two's complement.

8.42 Tag 42: Target Location Elevation Conversion

LS Tag LS Name US Mapped Key	Target Location Elevation 06 0E 2B 34 01 01 01 01 0E 01 01 03 04 00 00 00	Units Meters	Range -90019000	Format uint16
Notes		Conversion Formula		
- Calculated target elevation. This is the crosshair location if different from frame center. - Map 0(2^16-1) to -90019000 meters. - Offset = -900. - 1 meter = 3.2808399 feet. - Resolution: ~0.3 meters.			$\begin{pmatrix} \frac{\text{LS range}}{\text{uint_range}} & \text{LS_ui} \\ \frac{\text{dec}}{65535} & \text{LS_e} \end{pmatrix}$	·
Example Value				
18389.05 Meters [K][L][V] = [0d42][0d2][0xF8 23]				

8.42.1 Example Target Location Elevation

The crosshair or target location of a captured image or image sequence has a real earth coordinate represented by a latitude-longitude-elevation triplet and may differ from the center of the captured image. Target locations that lie above the horizon do not correspond to a point on the earth and should either not be reported, or be reported as an "error".

8.43 Tag 43: Target Track Gate Width Conversion

LS Tag	43	Units	Range	Format
LS Name	Target Track Gate Width	Pixels	0512	uint8
US Mapped	06 0E 2B 34 01 01 01 01			
Key	0E 01 01 03 05 00 00 00			
Notes		Conversion Formula		
- Tracking gate width (x value) of tracked target within field of view Closely tied to source video resolution		LS_dec = 2 * LS_uint LS_43_dec = round(2 * LS_43)		
in pixels.				
Example Value	Example LS Packet			
6 Pixels	[K][L][V] = [0d43][0d1][0x	(03]		

8.43.1 Example Target Track Gate Width

The target track gate width is used with Target Tracking Sensors that specify the pixel width of a tracking gate to be displayed about a target location.

8.44 Tag 44: Target Track Gate Height Conversion

LS Tag	44	Units	Range	Format	
LS Name	Target Track Gate Height	Pixels	0512	uint8	
US Mapped	06 0E 2B 34 01 01 01 01				
Key	0E 01 01 03 06 00 00 00				
Notes		Conversion	Conversion Formula		
- Tracking gate height (y value) of tracked target within field of view.			LS_dec = 2 * LS_uint LS_44_dec = round(2 * LS_44)		
- Closely tie in pixels.	ed to source video resolution				
Example Value	e Example LS Packet				
30 Pixels	[K][L][V] = [0d44][0d1][0x0F]				

8.44.1 Example Target Track Gate Height

The target track gate height is used with Target Tracking Sensors that specify the pixel height of a tracking gate to be displayed about a target location.

8.45 Tag 45: Target Error Estimate - CE90 Conversion

LS Tag	45	Units	Range	Format
LS Name	Target Error Estimate - CE90	Meters	04095	uint16
US Mapped	06 0E 2B 34 01 01 01 01			
Key	0E 01 01 03 07 00 00 00			
Notes		Conversion Formula		
- Circular Error 90 (CE90) is the estimated error distance in the horizontal direction Specifies the radius of 90% probability on a plane tangent to the earth's surface Res: ~0.0624 meters			$dec = \left(\frac{LS \text{ range}}{\text{uint}_{\text{range}}}\right)$ $_{45_{\text{dec}}} = \left(\frac{4095}{65535}\right)$	·
Example Value				
425.319 Meter				

8.45.1 Example Target Error Estimate – Circular Error 90% (CE90)

Target covariance values are represented in an easting-northing-up coordinate system centered about the target point. This is shown below (refer to Figure 8-16):

Covariance Matrix:

$$Q = egin{bmatrix} \sigma_e^2 & \sigma_{en} & \sigma_{eu} \ \sigma_{ne} & \sigma_n^2 & \sigma_{nu} \ \sigma_{ue} & \sigma_{un} & \sigma_u^2 \ \end{pmatrix}$$

Min and Max Sigma Values:

$$\begin{split} \sigma_{max}^2 &= \frac{\left(\sigma_e^2 + \sigma_n^2\right) + \sqrt{\left(\sigma_e^2 + \sigma_n^2\right)^2 - 4\left(\sigma_e^2\sigma_n^2 - \sigma_{en}^2\right)}}{2} \\ \sigma_{min}^2 &= \frac{\left(\sigma_e^2 + \sigma_n^2\right) - \sqrt{\left(\sigma_e^2 + \sigma_n^2\right)^2 - 4\left(\sigma_e^2\sigma_n^2 - \sigma_{en}^2\right)}}{2} \end{split}$$

Figure 8-16: Target Error Estimate - Circular Error 90%

CE90 represents the 90 percent probability circular error radius of absolute horizontal accuracy. With σ_{max} and σ_{min} known, the Circular Error for 90% confidence can be calculated as:

$$CE90 = \sigma_{\text{max}} \cdot a \left(\frac{\sigma_{\text{min}}}{\sigma_{\text{max}}} \right)$$
 where $a(x) = 0.4194x^2 + 0.0774x + 1.648$. This is one means for

determining CE90 from statistical data in the easting-northing-up coordinate system, yet similar calculations are allowed.

8.46 Tag 46: Target Error Estimate - LE90 Conversion

LS Tag LS Name US Mapped Key	46 Target Error Estimate - LE90 06 0E 2B 34 01 01 01 01 0E 01 01 03 08 00 00 00	Units Meters	Range 04095	Format uint16
Notes		Conversion Formula		
- Lateral Error 90 (LE90) is the estimated error distance in the vertical (or lateral) direction Specifies the interval of 90% probability in the local vertical direction Res: 0.0625 meters			ec = $\left(\frac{\text{LS range}}{\text{uint_range}}\right)$ _46_dec = $\left(\frac{4095}{65535}\right)$	·
Example Value				
609.0718 Meters [K][L][V] = [0d46][0d2][0x26 11]				

8.46.1 Example Target Error Estimate – Linear Error 90% (LE90)

Target covariance values are represented in an easting-northing-up coordinate system centered about the target point. This is shown below:

Covariance Matrix:

$$Q = egin{bmatrix} \sigma_e^2 & \sigma_{en} & \sigma_{eu} \ \sigma_{ne} & \sigma_n^2 & \sigma_{nu} \ \sigma_{ue} & \sigma_{un} & \sigma_u^2 \ \end{bmatrix}$$

Min and Max Sigma Values:

$$\sigma_{max}^{2} = \frac{\left(\sigma_{e}^{2} + \sigma_{n}^{2}\right) + \sqrt{\left(\sigma_{e}^{2} + \sigma_{n}^{2}\right)^{2} - 4\left(\sigma_{e}^{2}\sigma_{n}^{2} - \sigma_{en}^{2}\right)}}{2}$$

$$\sigma_{min}^{2} = \frac{\left(\sigma_{e}^{2} + \sigma_{n}^{2}\right) - \sqrt{\left(\sigma_{e}^{2} + \sigma_{n}^{2}\right)^{2} - 4\left(\sigma_{e}^{2}\sigma_{n}^{2} - \sigma_{en}^{2}\right)}}{2}$$

LE90 represents the 90 percent probability linear error of absolute vertical accuracy.

With the vertical (or "up") variance known (σ_u), the 90 percent linear error can be calculated as $LE90 = 1.645 \cdot \sigma_u$. This is one means for determining LE90 from statistical data in the easting-northing-up coordinate system, yet similar calculations are allowed.

8.47 Tag 47: Generic Flag Data 01 Conversion

LS Tag	47	Units	Range	Format
LS Name	Generic Flag Data 01	None	uint8	uint8
US Mapped	06 0E 2B 34 01 01 01 01			
Key	0E 01 01 03 01 00 00 00			
Notes		Conversion	n Formula	
- Generic Fla	gged Metadata		X	
- Position Fo	- Position Format msb81lsb		x	
- 1- Laser Ra	nge 1on,0off			
- 2- Auto-Tra	ck lon,0off			
- 3- IR Polar	ity 1blk,0wht			
- 4- Icing de	tected lice,0(off/no ice)			
- 5- Slant Ra	nge 1measured, Ocalc			
- 6- Image Invalid 1invalid, Ovalid				
- 7,8- Use 0				
Example Value	/alue Example LS Packet			
49	[K][L][V] = [0d47][0d1][0x3	1]		

8.47.1 Example Generic Flag Data 01

Miscellaneous yes / no aircraft and image related data items are logged within the Generic Flag Data 01 metadata item.

Updates in ST 0601.3 include an indication (bit 5) that Slant Range (Tag 21) is either "calculated" (0) or "measured" (1).

Updates in ST 0601.5 include the Image Invalid flag (bit 6). This flag indicates the state of the associated Motion Imagery as being "valid" (0) or "invalid" (1). An invalid (or unusable) image can be due to a lens change, bad focus, or other camera parameter which significantly degrades the image quality.

8.48 Tag 48: Security Local Metadata Set Conversion

LS Tag	48		Units	Range	Format
LS Name	Security Local	Metadata Set	None	Set	Set
US Mapped	Use ST0102 US k	ey for Local			
Key	Sets.				
Notes			Conversion Form	mula	
	ag to include the			X	
	y Metadata items 1 102 Local Set Tag:			X	
ST0601 tag (-	5 WICHIH CHC			
_	field is the size				
metadata ite 0d48.	ems to be package	d within tag			
Example Value Example LS Page			<u>k</u>		
X [K] [L] [V] = [0d					
US Key		03 01 01 00 00 00	ESD Digraph	Х	
US Name	Security Local		ESD Name	х	
Units	Range	Format	Units	Range	Format
X	X	X	X	X	X
Notes			Notes		
- X	110 0		- X	FCD ()	
US Conversion ×				ESD Conversion	
To US:	A		To ESD:	A	
<u>10 03.</u> - х			<u>10 LSD.</u> - х		
<u>To LS:</u>			<u>To LS:</u>		
- x			- x		

8.48.1 Example Security Local set

Both Universal Set tags and Local Set tags are defined for KLV formatted security items in MISB ST 0102. When incorporated within ST 0601, multiple security metadata KLV Local Set triplets are allowed to be contained within the 0d48 UAS LS metadata item.

8.49 Tag 49: Differential Pressure Conversion

LS Tag	49	Units	Range	Format	
LS Name	Differential Pressure	Millibar	05000	uint16	
US Mapped	06 0E 2B 34 01 01 01 01				
Key	0E 01 01 01 01 00 00 00				
Notes		Conversion F	Conversion Formula		
- Differential pressure at aircraft location. Measured as the Stagnation/impact/total pressure minus static pressure. - Map 0(2^16-1) to 05000 mbar. - 1 mbar = 0.0145037738 PSI. - Res: ~0.08 mbar			$= \left(\frac{\text{LS range}}{\text{uint_range}} * \right)$ $9_{dec} = \left(\frac{5000}{65535} * \right)$	•	
Example Value	•				
1191.958 mbar	[K][L][V] = [0d49][0d2][0x	3D 07]			

8.49.1 Example Differential Pressure

Differential pressure provides a method of calculating relative velocity of an item as it passes through a fluid, or conversely the velocity of a fluid as it passes by an item. Velocity can be determined by differential pressure by the following:

$$v_1 = \sqrt{\frac{2p_d}{\rho}}$$

where p_d is the measured differential pressure (p_d = impact pressure minus static pressure = $p_i - p_s$), and ρ is the density of the fluid outside the item.

8.50 Tag 50: Platform Angle of Attack Conversion

LS Tag	50	Units	Range	Format
LS Name	Platform Angle of Attack	Degrees	+/- 20	int16
US Mapped	06 0E 2B 34 01 01 01 01			
Key	0E 01 01 01 02 00 00 00			
Notes		Conversion	Formula	
 Platform Attack Angle. Angle between platform longitudinal axis and relative wind. 		$LS_{dec} = \left(\frac{LS \text{ range}}{int_{range}} * LS_{int}\right)$		
- Map -(2^15-	ngles for upward relative wind. $-1)(2^15-1)$ to $+/-20$.	LS_	$_{50}$ dec = $\left(\frac{40}{65534}\right)$	* LS_50)
- Use - (2^15)) as an "out of range"			
(2 ¹⁵) = (0x8000.			
- Res: ~610 micro degrees.				
Example Value	e Example LS Packet			
-8.670177	[K][L][V] = [0d50][0d2][0xC8	8 8 3]		
Degrees				

8.50.1 Example Platform Angle of Attack

For legacy purposes, both range-restricted (Tag 50) and full-range (Tag 92) representations of Platform Angle of Attack MAY appear in the same ST 0601 packet. A single representation is preferred favoring the full-range version (Tag 92).

The angle of attack of an airborne platform is the angle formed between the relative wind and platform longitudinal axis (line made by the fuselage). Positive angles for wind with a relative upward component. Refer to Figure 8-17.

Figure 8-17: Platform Angle of Attack

Note that the int16 used in the LS value is encoded using two's complement.

8.51 Tag 51: Platform Vertical Speed Conversion

LS Tag LS Name US Mapped Key	51 Platform Vertical Speed 06 0E 2B 34 01 01 01 01 0E 01 01 01 03 00 00 00	Units Meters/Se cond	Range +/- 180	Format int16		
Notes		Conversion F	ormula			
Notes - Vertical speed of the aircraft relative to zenith. Positive ascending, negative descending. - Map-(2^15-1)(2^15-1) to +/-180 - Use -(2^15) as an "out of range" indicator. - (2^15) = 0x8000. - Resolution: ~ 0.0055 meters/second.			$c = \left(\frac{\text{LS range}}{\text{int_range}}\right)$ $_{51} = \left(\frac{360}{65534} * 1\right)$	•		
Example Value	Example Value					
-61.88693 m/s	[K][L][V] = [0d51][0d2][0xD	3 FE]				

8.51.1 Example Vertical Speed

The vertical speed metadata item is the climb or decent rate in meters per second of an airborne platform in the zenith direction. Positive values indicate an ascending platform, while negative values indicate descending.

Note that the int16 used in the LS value is encoded using two's complement.

8.52 Tag 52: Platform Sideslip Angle Conversion

LS Tag LS Name US Mapped Key	52 Platform Sideslip Angle 06 0E 2B 34 01 01 01 01 0E 01 01 01 04 00 00 00	Units Degrees	Range +/- 20	Format int16
the platfor relative with the positive and left. - Map -(2^15-15) Use -(2^15) indicator.	Notes - The sideslip angle is the angle between the platform longitudinal axis and relative wind. - Positive angles to right wing, neg to left. - Map -(2^15-1)(2^15-1) to +/-20. - Use -(2^15) as an "out of range" indicator. (2^15) = 0x8000.		Formula $dec = \left(\frac{LS \text{ range}}{\text{int_range}}\right)$ $52_{dec} = \left(\frac{40}{65534}\right)$	•
Example Value -5.082475 Degrees	Example LS Packet [K][L][V] = [0d52][0d2][0xD	F 79]		

8.52.1 Example Platform Sideslip Angle

For legacy purposes, both range-restricted (Tag 52) and full-range (Tag 93) representations of Platform Sideslip Angle MAY appear in the same ST 0601 packet. A single representation is preferred favoring the full-range version (Tag 93).

The angle formed between the platform longitudinal axis (line made by the fuselage) and the relative wind is the sideslip angle. A negative sideslip angle is depicted in Figure 8-18:

Figure 8-18: Platform Sideslip Angle

Note that the int16 used in the LS value is encoded using two's complement.

8.53 Tag 53: Airfield Barometric Pressure Conversion

LS Name US Mapped	53 Airfield Barometric Pressure 06 0E 2B 34	Units Millibar	Range 05000	Format uint16
Notes		Conversion Formula		
Notes - Local pressure at airfield of known height. Pilot's responsibility to update. - Map 0(2^16-1) to 05000 mbar. - 1013.25mbar = 29.92inHg - Min/max recorded values of 870/1086mbar. - Resolution: ~0.08 Millibar			$c = \left(\frac{\text{LS range}}{\text{uint_range}}\right)$ $53_{\text{dec}} = \left(\frac{5000}{65535}\right)$	ř
Example Value	Example LS Packet			
2088.96 mbar	[K][L][V] = [0d53][0d2][0x6P	F4]		

8.53.1 Example Barometric Pressure at Airfield

Barometric pressure at airfield is used with altimeters to display airfield elevation when on the airfield.

8.54 Tag 54: Airfield Elevation Conversion

US Mapped	54 Airfield Elevation 06 0E 2B 34 01 01 01 01 0E 01 01 02 03 00 00 00	Units Meter s	Range -90019000	Format uint16
Notes		Conversion Formula		
Notes - Elevation of Airfield corresponding to Airfield Barometric Pressure. - Map 0(2^16-1) to -90019000 meters. - Offset = -900. - 1 meter = 3.2808399 feet. - Resolution: ~0.3 meters.			$= \left(\frac{\text{LS range}}{\text{uint_range}} * \text{LS_}\right)$ $54_{\text{dec}} = \left(\frac{19900}{65535} * \text{LS}\right)$	Ť
Example Value	Example LS Packet			
8306.806 Meter	rs [K][L][V] = [0d54][0d2][0x76	70]		

8.54.1 Example Airfield Elevation

Airfield elevation established at airfield location. This relates to the Barometric Pressure at Airfield metadata item.

8.55 Tag 55: Relative Humidity Conversion

LS Tag	55	Units	Range	Format	
LS Name	Relative Humidity	Percent	0100	uint8	
US Mapped	06 0E 2B 34 01 01 01 01				
Key	0E 01 01 01 09 00 00 00				
Notes		Conversion I	Conversion Formula		
- Relative Humidity at aircraft location. - Map 0(2^8-1) to 0100.		$LS_dec = \left(\frac{LS \ range}{uint_range} * LS_uint\right)$			
- Resolution: ~0.4%.		LS	$_{55}$ _dec = $\left(\frac{100}{255}\right)$	* LS_55)	
Example Value	e Example LS Packet				
50.58823%	[K][L][V] = [0d55][0d1][0x8	1]			

8.55.1 Example Relative Humidity

Relative humidity is the ratio between the water vapor density and the saturation point of water vapor density and is expressed here as a percentage.

8.56 Tag 56: Platform Ground Speed Conversion

LS Tag	56		Units	Range	Format
LS Name	Platform Ground	Speed	Meters/Second	0255	uint8
US Mapped	06 OE 2B 34 01	01 01 01			
Key	OE 01 01 01 05	00 00 00			
Notes			Conversion Form	nula	
	cted to the groun			LS_dec = LS_int	
=	atform passing ov	erhead.	LS_56	6_dec = round(LS_	56)
- 0255 meter	-,				
-1 m/s = 1.94	1384449 knots. 1 meter/second.				
Example Value	I meter/second.	Example LS Pac	okot .		
140 m/s		[K][L][V] = [0d]			
US Key	х	[][-][-]	ESD Digraph	Gv	
US Name	х		ESD Name	Platform Ground	Speed
Units	Range	Format	Units	Range	Format
Х	X	Х	Knots	0999	N
Notes			Notes		
- x			- Speed on the ground of an airborne platform		
			passing overhead.		
	US Conversion		ESD Conversion		
Х			ESD_dec = LS_uint		
<u>To US:</u>			<u>To ESD:</u>		
- x			- Convert LS to decimal.		
<u>To LS:</u>			- Convert decimal to ASCII.		
- X			To LS:		
			- Convert ESD ASCII to decimal.		
			- Map decimal to uint16.		

8.56.1 Example Platform Ground Speed

The ground speed of an airborne platform is the aircraft's speed as projected onto the ground.

8.57 Tag 57: Ground Range Conversion

LS Tag	57		Units	Range	Format	
LS Name	Ground Range		Meters	05,000,000	uint32	
US Mapped	06 OE 2B 34 01	1 01 01 01				
Key	OE 01 01 01 06	5 00 00 00				
Notes			Conversion Formula			
- Horizontal distance from ground position of aircraft relative to nadir, and target			$LS_dec = \left(\frac{LS \text{ range}}{\text{uint range}} * LS_uint\right)$			
	. Dependent upo	n Slant Range		5000000	· \	
and Depress	-		LS_57_dec	$= \left(\frac{5000000}{4294967295} * \right.$	LS_57)	
± .	2-1) to 050000 mile (knot) = 18					
	$\sim 1.2 \text{ mili mete}$					
Example Value		Example LS Pa	cket			
3506979 Meters			i57][0d4][0xB3 8E	AC F1]		
US Key	Х		ESD Digraph	Gr		
US Name	х		ESD Name	Ground Range		
Units	Panga	Format	I India	Danas	Cormot	
Office	Range	ronnat	Units	Range	Format	
×	x	roiiiiat ×	Units Nautical Miles	018.00	II.HH	
			0			
Х			Nautical Miles Notes - Horizontal di		II.HH	
Notes			Nautical Miles Notes - Horizontal di	018.00 stance between the	II.HH	
Notes	х		Nautical Miles Notes - Horizontal di the target.	018.00 stance between the Measured in Nautic	II.HH e sensor and cal Miles.	
Notes - x	x US Conversion		Nautical Miles Notes - Horizontal di the target.	018.00 stance between the Measured in Nautic	II.HH e sensor and cal Miles.	
Notes - x	x US Conversion		Nautical Miles Notes - Horizontal di the target. ESD_dec = (o18.00 stance between the Measured in Nautic ESD Conversion 5000000 4294967295*LS_uint	II.HH e sensor and cal Miles.	
Notes - x To US: - x	x US Conversion		Nautical Miles Notes - Horizontal di the target. ESD_dec = (To ESD: - Convert LS to - Account for u	stance between the Measured in Nautic ESD Conversion 5000000 4294967295*LS_uint decimal.	II.HH e sensor and cal Miles.	
Notes - x To US: - x To LS:	x US Conversion		Nautical Miles Notes - Horizontal di the target. ESD_dec = (To ESD: - Convert LS to	stance between the Measured in Nautic ESD Conversion 5000000 4294967295*LS_uint decimal.	II.HH e sensor and cal Miles.	
Notes - x To US: - x To LS:	x US Conversion		Nautical Miles Notes - Horizontal di the target. ESD_dec = (To ESD: - Convert LS to - Account for u	stance between the Measured in Nautic ESD Conversion 5000000 4294967295*LS_uint decimal.	II.HH e sensor and cal Miles.	
Notes - x To US: - x To LS:	x US Conversion		Nautical Miles Notes - Horizontal di the target. ESD_dec = (To ESD: - Convert LS to - Account for u - Convert decim To LS: - Convert ESD A	stance between the Measured in Nautic ESD Conversion 5000000 4294967295*LS_uint decimal.	II.HH e sensor and cal Miles.	
Notes - x To US: - x To LS:	x US Conversion		Nautical Miles Notes - Horizontal di the target. ESD_dec = (To ESD: - Convert LS to - Account for u - Convert deciments	stance between the Measured in Nautic ESD Conversion 5000000 4294967295*LS_uint decimal. nits. SCII to decimal. nits.	II.HH e sensor and cal Miles.	

8.57.1 Example Ground Range

Ground range is the horizontal distance between the aircraft/sensor location and the target of interest and does not account for terrain undulations.

8.58 Tag 58: Platform Fuel Remaining Conversion

LS Tag	58		Units	Range	Format	
LS Name	Platform Fuel H	Remaining	Kilogram	010,000	uint16	
US Mapped	06 OE 2B 34 O1	01 01 01				
Key	OE 01 01 01 07	7 00 00 00				
Notes			Conversion Formula			
- Remaining fuel on airborne platform. Metered as fuel weight remaining.			LS_dec =	(LS range * LS uint_range * LS	S_uint)	
- Map 0(2^16-1) to 010000 Kilograms. - 1 kilogram = 2.20462262 pounds. - Resolution: ~.16 kilograms.			LS_58_d	$lec = \left(\frac{10000}{65535} * LS\right)$	S_58)	
Example Value	-	Example LS Pa	cket			
6420.539 kg			158][0d2][0xA4 5D]		
US Key	Х		ESD Digraph	Fr		
US Name	х		ESD Name	Platform Fuel Re	emaining	
Units	Range	Format	Units	Range	Format	
Х	X	X	Pounds	099,999	N	
Notes			Notes			
- x			_	l on airborne pla	tform. Metered	
	US Conversion		as fuel weigh	ESD Conversion		
	X		,		04622621bs	
To US:			ESD_dec = (10000 65535*LS_uint) *2	1kg	
- x			To ESD:			
To LS:	To LS:			- Convert LS to decimal.		
- x			- Account for units.			
				- Convert decimal to ASCII.		
			<u>To LS:</u>			
				- Convert ESD ASCII to decimal.		
			- Account for units.			
			- Map decimal to uint16.			

8.58.1 Example Platform Fuel Remaining

Platform fuel remaining indicates the current weight of fuel present on the host platform and is measured in kilograms.

8.59 Tag 59: Platform Call Sign Conversion

LS Tag	59		Units	Range	Format	
LS Name	Platform Call Sign		String	1127	ISO 646	
US Mapped	06 OE 2B 34 O1	01 01 01				
Key	OE 01 04 01 01	00 00 00				
Notes			Conversion Forr	mula		
- Call Sign of	platform or ope	rating unit.		X		
- Value field	is Free Text.			Х		
Example Value		Example LS Pag	ket			
TOP GUN		[K][L][V] = [0d	59][0d7][0x54 4F	50 20 47 55 4E]		
US Key	Х		ESD Digraph	Cs		
US Name	х		ESD Name	Platform Call Si	gn	
Units	Range	Format	Units	Range	Format	
Х	X	X	String	09	N	
Notes			Notes			
- x			- First nine characters of the Call Sign of a			
			group or squadron.			
	US Conversion			ESD Conversion		
Х			Х			
<u>To US:</u>			<u>To ESD:</u>			
- x			- Truncate LS String and convert to ESD			
<u>To LS:</u>			<u>To LS:</u>			
- X			- Convert ESD s	string to LS		

8.59.1 Example Platform Call Sign

The platform call sign is used to distinguish groups or squadrons of platforms within different operating units from one another. Call sign is often related to the aircraft tail number.

8.60 Tag 60: Weapon Load Conversion

LS Tag	60		Units	Range	Format
LS Name	Weapon Load		uint16	X	nibble
US Mapped	06 0E 2B 34 01	01 01 01			
Key	OE 01 01 01 12	00 00 00			
Notes			Conversion For	mula	
- Current weap into two byt	ons stored on air	ccraft broken		x x	
-	[0x41][0x02][[byt	te11[bvt.e2]]			
	nib1][nib2]], nik				
	Station Number				
- byte1-nib2 =	Substation Number	er			
- byte2-nib1 =	Weapon Type				
	Weapon Variant				
Example Value	Example Value Example LS Pac				
45016		[K][L][V] = [0d	60][0d2][0xAF D8]	
US Key	Х		ESD Digraph	Wl	
US Name	х		ESD Name	Weapon Load	
Units	Range	Format	Units	Range	Format
X	X	X	X	X	Х
Notes			Notes		
- X			- X		
US Conversion			ESD Conversion		
	X			X	
To US:			To ESD:		
- x			- x		
To LS:			To LS:		
- X			- X		

8.60.1 Example Weapon Load

Weapon load is broken into two bytes with the first byte indicates the aircraft store location, and the second byte indicates store type. Each byte is broken into two nibbles with [nib1] being the most significant nibble with bit order [3210] where 3=msb.

Aircraft store location is indicated by station number which starts numbering at the outboard left wing as store location 1 and increases towards the outboard right wing. Each station can have a different weapon installed, or multiple weapons on the same station. In a multiple weapon per station situation, the substation number begins at 1 and increases from there. A substation number of 0 indicates a single store located at the station. The Store Location byte has two nibbles with the first most significant nibble indicating station number, and the second indicating substation number. Note an example store location in the diagram of Figure 8-19:

Figure 8-19: Aircraft Store Location

ST 0601.8 UAS Datalink Local Set

The weapon type byte is also broken into two nibbles with the first most significant nibble indicating weapon type and the second nibble indicating weapon variant.

A listing of available weapons is TBD.

8.61 Tag 61: Weapon Fired Conversion

LS Tag	61		Units	Range	Format
LS Name	Weapon Fired		uint8	X	nibble
US Mapped	06 OE 2B 34 01				
Key	OE 01 01 01 13	00 00 00			
Notes			Conversion For	mula	
- Indication v	when a particular	weapon is		X	
	Correlate with Un	_		X	
	ormat to Weapon L	oad byte 2:			
- [byteN] = [
- nib1 = Stati					
- nib2 = Subst	tation Number				
Example Value Example LS Pac					
186		[K][L][V] = [0d]			
US Key	Х		ESD Digraph	Wf	
US Name	Х		ESD Name	Weapon Fired	
Units	Range	Format	Units	Range	Format
Х	X	X	X	X	X
Notes			Notes		
- X			- X		
US Conversion			ESD Conversion		
	X			X	
To US:			To ESD:		
- X			- X		
To LS:			To LS:		
- X			- X		

8.61.1 Example Weapon Fired

The Weapon Fired metadata item has the same format as the first byte of the Weapon Load metadata item indicating station and substation location of a store. Byte 1 is broken into two nibbles with [nib1] being the most significant nibble with bit order [3210] where 3=msb.

When included in a KLV packet, the weapon fired item should be correlated with the mandatory timestamp to determine the release time of a weapon.

8.62 Tag 62: Laser PRF Code Conversion

LS Tag	62		Units	Range	Format
LS Name	Laser PRF Code		None	065535	uint16
US Mapped	06 0E 2B 34 01				
Key	0E 01 02 02 01	00 00 00			
Notes			Conversion For	mula	
	lse Repetition F	requency (PRF)		X	
	mark a target.			X	
	RF code is a thre				
	sting of the val				
- Only the val	ues 11118888 c	an be used			
Example Value	UL 9 S.	Example LS Pac	okot .		
50895			KEL 62][0d2][0xC6 CE	ויי	
	х	[[][[]] = [00		I i.c	
US Key			ESD Digraph	1	
US Name	Х		ESD Name	Laser PRF Code	
Units	Range	Format	Units	Range	Format
X	X	X	None	11118888	NNNN
Notes			Notes		
- X				lse Repetition Fre	quency (PRF)
				mark a target.	5 11 1
				F code is a three sting of the value	_
			- Only the values 11118888 can be used without 0's or 9's.		
US Conversion			ESD Conversion		
	X		×		
To US:			To ESD:		
- x			- Convert LS uint to ASCII.		
To LS:			To LS:		
- X			- Convert ASCI	I to LS uint.	

8.62.1 Example Laser PRF Code

When enabled, laser designators can generate a pulsed signal according to a Pulse Repetition Frequency (PRF) Code which distinguishes one laser beam from another.

8.63 Tag 63: Sensor Field of View Name Conversion

LS Tag LS Name	63 Sensor Field of	View Name	Units List	Range 0255	Format
US Mapped Key	06 0E 2B 34 01 0E 01 02 02 02				
Notes			Conversion Forr	nula	
Notes Names sensor field of view quantized steps. Ole Ultranarrow Ole Narrow Ole Medium Ole Wide Ole Ultrawide Ole Narrow Medium Ole Ex Ultranarrow Ole Ax Ultranarrow Ole Ax Ultranarrow		x x			
Example Value Example LS Pac					
209		[K][L][V] = [0d			
US Key	Х		ESD Digraph	Vn	
US Name	X		ESD Name	Sensor Field of	View Name
Units	Range	Format	Units	Range	Format
Х	Х	Х	Code	00NN	NN
Notes - x			Notes - Names sensor field of view quantized steps. - 00 = Ultranarrow - 01 = Narrow - 02 = Medium - 03 = Wide - 04 = Ultrawide - 05 = Narrow Medium - 06 = 2x Ultranarrow - 07 = 4x Ultranarrow		
US Conversion			ESD Conversion		
<u>To US:</u> - x <u>To LS:</u> - x	х		To ESD: - Convert LS ui To LS: - Convert ASCII		

8.63.1 Example Sensor Field of View Name

The field of view name is a way to indicate to the operator the current lens used on the Motion Imagery sensor.

The Sensor Field of View names are for generic guidance and do not correspond to specific field of view values. Refer to Horizontal and Vertical Field of View metadata items (Tags 16 & 17) for specific aperture angles.

8.64 Tag 64: Platform Magnetic Heading Conversion

LS Tag	64		Units	Range	Format
LS Name	Platform Magnet	ic Heading	Degrees	0360	uint16
US Mapped	06 OE 2B 34 O1				
Key	0E 01 01 01 08	00 00 00			
Notes			Conversion Form	nula	
between long	gnetic heading an gitudinal axis an	d Magnetic	LS_dec =	<pre>(LS range</pre>	S_uint)
	red in the horizo	ntal plane.	T.C. C.A. +	$lec = \left(\frac{360}{65535} * Lec \right)$	c. c. \
-	5-1) to 0360. ~5.5 milli degre	08	L5_64_0	65535 ^ L	°_°4 /
Example Value	-5.5 milli degle	Example LS Pag	rkat		
311.8682 Degree	es		.64][0d2][0xDD C5	1	
US Key	Х		ESD Digraph	Mh	
US Name	Х		ESD Name	Platform Magneti	c Heading
Units	Range	Format	Units	Range	Format
X	X	X	Degrees	0359.99	DDD.HH
Notes			Notes		
- X			- Aircraft magnetic heading angle. Relative between fuselage chord line and Magnetic		
			between fusel North.	age chord line ar	nd Magnetic
	US Conversion		ESD Conversion		
х <u>То US:</u>			ESD_dec	$= \left(\frac{360}{65535} * LS_{-}\right)$	uint)
- x			To FCD:		
To LS:			To ESD: - Convert LS to	decimal	
- X			- Convert LS to decimal Convert decimal to ASCII.		
A			To LS:		
				SCII to decimal.	
			- Map decimal t		

8.64.1 Example Magnetic Heading

Figure 8-20: Magnetic Heading

8.65 Tag 65: UAS LS Version Number Conversion

LS Tag	65 UAS LS Version	Numbor	Units Number	Range	Format
LS Name US Mapped Key	06 0E 2B 34 01 0E 01 02 03 03	01 01 01	Number	0233	ullico
Notes			Conversion Forr	mula	
- Version number of the UAS LS document used to generate a source of UAS LS KLV metadata.			x x		
 0 is pre-release, initial release (0601.0), or test data. 1255 corresponds to document revisions ST0601.1 thru ST0601.255. 					
Example Value	Example Value Example LS Pac				
Version 232		[K][L][V] = [0d			
US Key	X		ESD Digraph	Iv ESD ICD Version	
US Name	Х		ESD Name	ESD ICD Version	
Units	Range	Format	Units Number	Range	Format
Notes	X	X	Number	099	NN
- x				ne ESD System use	to encode ESD
			- 0 corresponds to documents ASI-119 and ASI-209.		
			- 199 corresponds to document revisions of ST0601.1 thru ST 0601.99.		
US Conversion			ESD Conversion		
х				X	
<u>To US:</u>			To ESD: - Convert uint to ASCII.		
- x				to ASCII.	
<u>To LS:</u> - x			<u>To LS:</u> - Convert ASCII	to wint	
- 4			- COULVET C MOCIT	. to uiiit.	

8.65.1 Example UAS LS Version Number

The UAS LS version number metadata item is used to indicate which version of ST 0601 is used as the source standard of UAS LS metadata. This item is not required in every packet of metadata, but is useful when included periodically.

8.66 Tag 66: Target Location Covariance Matrix Conversion

LS Tag	66	Units	Range	Format
LS Name	Target Location Covariance	TBD	TBD	TBD
US Mapped Key	Matrix 06 0E 2B 34 02 05 01 01 0E 01 03 03 14 00 00 00			
Notes		Conversion	n Formula	
- Covariance Matrix of the error associated with a targeted location Details TBD.			TBD TBD	
Example Value	Example LS Packet			
X	[K][L][V] = [0d66][0dTBD][x	:]		

8.66.1 Example Target Location Covariance Matrix

Details TBD

8.67 Tag 67: Alternate Platform Latitude Conversion

LS Tag	67	Units	Range	Format	
LS Name	Alternate Platform Latitude	Degrees	+/- 90	int32	
US Mapped	06 0E 2B 34 01 01 01 01				
Key	OE 01 01 01 14 00 00 00				
Notes		Conversion Fo	ormula		
latitude of - Based on WGS - Map - (2^31-1 - Use - (2^31) - (2^31) = 0) (2^31-1) to $+/-90$. as an "error" indicator.		$ec = \left(\frac{LS \text{ range}}{\text{int_range}} * \right)$ $dec = \left(\frac{180}{4294967294}\right)$	•	
Example Value	e Value Example LS Packet				
-86.04120734894	[K][L][V] = [0d67][0d4][0x85 A1 5A 39]			
Degrees					

8.67.1 Example Latitude

Latitude is the angular distance north or south of the earth's equator, measured in degrees along a meridian. Generated from GPS/INS information and based on the WGS84 coordinate system.

The Alternate Platform is an airborne or ground based platform that is connected via direct datalink to a UAS generating Motion Imagery and metadata.

Note that the int32 used in the LS value is encoded using two's complement.

8.68 Tag 68: Alternate Platform Longitude Conversion

LS Tag	68	Units	Range	Format	
LS Name	Alternate Platform Longitude	Degrees	+/- 180	int32	
US Mapped	06 0E 2B 34 01 01 01 01				
Key	0E 01 01 01 15 00 00 00				
Notes		Conversion Fo	rmula		
longitude of - Based on WGS8 - Map -(2^31-1) - Use -(2^31) = 0x8 (2^31) = 0x8	0(2^31-1) to +/-180. as an "error" indicator. 30000000.	LS_dec = \(\frac{\text{LS range}}{\text{int_range}} * \text{LS_int} \) LS_68_dec = \(\frac{360}{4294967294} * \text{LS_68} \)			
- Resolution: ~84 nano degrees. Example Value					
0.1555275545248 Degrees		[K][L][V] = [0d68][0d4][0x00 1C 50 1C]			

8.68.1 Example Longitude

Longitude is the angular distance on the earth's surface, measured east or west from the prime meridian at Greenwich, England, to the meridian passing through a position of interest. Generated from GPS/INS information and based on the WGS84 coordinate system.

The Alternate Platform is an airborne or ground based platform that is connected via direct datalink to a UAS generating Motion Imagery and metadata.

Note that the int32 used in the LS value is encoded using two's complement.

8.69 Tag 69: Alternate Platform Altitude Conversion

LS Tag LS Name US Mapped Key	Alternate Platform Altitude 06 0E 2B 34 01 01 01 01 0E 01 01 01 16 00 00 00	Units Meters	Range -90019000	Format uint16
Notes		Conversion	Formula	
measured f Represents ted with U - Map 0(2^	- Altitude of alternate platform as measured from Mean Sea Level (MSL). Represents altitude of platform connec ted with UAS Map 0(2^16-1) to -90019000 meters 1 meter = 3.2808399 feet.		$\frac{\left(\frac{\text{LS range}}{\text{uint_range}} * \text{LS_u}\right)}{\text{dec} = \left(\frac{19900}{65535} * \text{LS_u}\right)}$	
Example Valu	e Example LS Packet			
9.445334 Mete	ers [K][L][V] = [0d69][0d2][0x0	B B3]		

8.69.1 Example Platform Altitude

The Alternate Platform Altitude is a true altitude or true vertical distance above mean sea level. Measurement is GPS derived.

8.70 Tag 70: Alternate Platform Name Conversion

LS Tag	70	Units	Range	Format
LS Name	Alternate Platform Name	String	1127	ISO 646
OO Mapped	06 0E 2B 34 01 01 01 01			
Key	0E 01 01 01 17 00 00 00			
Notes		Conversion I	Formula	
- Name of alte	rnate platform connected to	X		
UAS.			X	
	ce', 'Rover', 'Predator',			
	utrider', 'Pioneer',			
	Warrior', 'Shadow', 'Hunter			
II', 'Global	Hawk', 'Scan Eagle', etc.			
- Value field is Free Text.				
- Maximum 127 characters.				
Example Value Example LS Packet				
APACHE	[K][L][V] = [0d70][0d6][0x4]	l 50 41 43 48	45]	

8.70.1 Example Alternate Platform Name

The Alternate Platform Name metadata item distinguishes which platform is connected with the UAS which is generating Motion Imagery and metadata products. The alternate platform can be airborne or ground based and is to be described sufficiently (yet with brevity) in text using this metadata item.

8.71 Tag 71: Alternate Platform Heading Conversion

LS Tag LS Name US Mapped Key	71 Alternate Platform Heading 06 0E 2B 34 01 01 01 01 0E 01 01 01 18 00 00 00	Units Degrees	Range 0360	Format uint16		
Notes		Conversion	Formula			
- Heading angle of alternate platform connected to UAS. Relative between longitudinal axis and True North measured in the horizontal plane. - Map 0(2^16-1) to 0360. - Resolution: ~5.5 milli degrees.			ec = $\left(\frac{\text{LS range}}{\text{int_range}}\right)$ 71_dec = $\left(\frac{360}{65535}\right)$			
Example Value	Example Value					
32.60242 Degrees [K][L][V] = [0d71][0d2][0x17 2F]						

8.71.1 Example Alternate Platform Heading

The Alternate Platform heading angle is defined as the angle between the alternate platform longitudinal axis (line made by the fuselage) and true north measured in the horizontal plane. Angles increase in a clockwise direction when looking from above the platform. North is 0 degrees, east is 90, south is 180, and west is 270 degrees from true north.

8.72 Tag 72: Event Start Time - UTC Conversion

LS Tag	72		Units	Range	Format	
LS Name	Event Start Time	- UTC	Microseconds	0(2^64-1)	uint64	
US Mapped	Use EG0104 US Key					
Key						
Notes			Conversion Formula			
 Start time of scene, project, event, mission, editing event, license, publication, etc. Represented as the microseconds elapsed since midnight (00:00:00), January 1, 1970. 				x x		
	m the POSIX IEEE 10	± '				
	1 microsecond.	ooli soamaala.				
Example Value		Example LS Pa	cket			
April 16, 1995			d72][0d8][0x00 02	2 D5 CF 4D DC 9A 3	35]	
US Key	06 0E 2B 34 01 0 07 02 01 02 07 0	1 00 00	ESD Digraph	х		
US Name	Event Start Date	Time - UTC	ESD Name	Mission Start Ti Date of Collecti		
Units	Range	Format	Units	Range	Format	
Date/Time	'YYYYMMDDhhmmss'	ISO 8601	X	X	X	
Notes			Notes			
project, mis	e beginning date ar ssion, scene, editi olication etc.		- The LS Event Start Time - UTC can be converted to three ESD items: - Mission Start Date (Md)			
	ext as: 'YYYYMMDDhh	mmss'	- Mission Start Date (Md) - Mission Start Time (Mc)			
			- Date of Collection (Cd)			
			- Refer to EG01 items.	104 for details on	these ESD	
US Conversion		ESD Conversion				
	Х			Х		
To US:			To ESD:			
- Convert uint	64 to formatted st	ing.	- x			
To LS:			To LS:			
- Convert forma	atted string to uir	nt64.	- X			

8.72.1 Example Event Start Time - UTC

A Precision Time Stamp discretely labels a scale of time. This system is widely used within systems of differing underlying architectures. The Precision Time Stamp is an encoding of Coordinated Universal Time (UTC) and therefore accounts for the addition (or subtraction) of leap seconds. Leap seconds are used to synchronize the UTC clock metric with the yearly rotation period of the earth about the sun.

This POSIX time metadata value is used to represent the start time of a mission, or other event related to the Motion Imagery collection.

Event Start Time is to be interpreted as an arbitrary time hack indicating the start of some event.

8.73 Tag 73: RVT Local Set Conversion

LS Tag	73		Units	Range	Format
LS Name	RVT Local Set		None	Set	Set
US Mapped	Use ST0806 RVT	LS 16-byte Key.			
Key					
Notes			Conversion Forr	mula	
 Local set tag to include the ST0806 RVT Local Set metadata items within ST0601. Use the ST0806 Local Set Tags within the ST0601 tag 0d73. The length field is the size of all RVT LS metadata items to be packaged within tag 0d73. 				x x	
Example Value Example LS Pa			ket		
Х			73][0dx][x]		
US Key		0B 01 01 00 00 00	ESD Digraph	х	
US Name	Remote Video Te: Set	rminal Local	ESD Name	х	
Units	Range	Format	Units	Range	Format
None	Set	Set	X	Х	Х
Notes			Notes		
- X			- X		
	US Conversion			ESD Conversion	
	X			X	
To US:			To ESD:		
- x			- x		
To LS:			To LS:		
- x			- x		

8.73.1 Example RVT Local set Conversion

ST 0601 Tag 73 allows users to include, or nest, RVT LS (ST 0806) metadata items within ST 0601.

This provides users who are required to use the RVT LS data field (Points of Interest, Areas of Interest, etc.) a method to leverage the data field contained within ST 0601 (like platform location, and sensor pointing angles).

8.74 Tag 74: VMTI Data Set Conversion

LS Tag	74		Units	Range	Format	
LS Name	VMTI Data Set		None	Set	Set	
US Mapped	Use ST0903 VMTI	LS 16-byte				
Key	Key.					
Notes			Conversion Form	mula		
	ag to include the			X		
	etadata items with			X		
ST0601 tag (903 Local Set Tags	s within the				
	field is the size	of all VMTT LS				
	ems to be packaged					
0d74.		<u>-</u>				
Example Value Example LS Pa						
Х			.74][0dx][x]			
US Key		0B 01 01 00 00 00	ESD Digraph	Х		
US Name	Video Moving Ta: Local Set	rget Indicator	ESD Name	х		
Units	Range	Format	Units	Range	Format	
None	Set	Set	X	X	X	
Notes			Notes			
- X			- X			
	US Conversion			ESD Conversion		
	X			X		
To US:			To ESD:			
- X			- X			
To LS:			<u>To LS:</u>			
- X			- x			

8.74.1 Example VMTI Local set Conversion

ST 0601 Tag 74 allows users to include, or nest, VMTI LS (MISB ST 0903) metadata items within ST 0601.

This provides users who are required to use the VMTI LS data field a method to leverage the data field contained within ST 0601 (like platform location, and sensor pointing angles, or frame center).

8.75 Tag 75: Sensor Ellipsoid Height Conversion

LS Tag	75	Units	Range	Format	
LS Name	Sensor Ellipsoid Height	Meters	-90019000	uint16	
US Mapped	06 0E 2B 34 01 01 01 01				
Key	0E 01 02 01 82 47 00 00				
Notes		Conversion	on Formula		
	- Sensor Ellipsoid Height as measured from the reference WGS84 Ellipsoid.		$LS_dec = \left(\frac{LS \ range}{uint_range} * LS_uint\right) - Offset$		
-	16-1) to -90019000 meters.		/19900	\	
- 1 meter =	3.2808399 feet.	LS_75_dec =		LS_75) - 900	
- Resolution	: ~0.3 meters.		•	·	
Example Valu	e Example LS Packet				
14190.72 Mete	rs [K][L][V] = [0d75][0d2][0xC2	21]			

8.75.1 Example Sensor Ellipsoid Height

For legacy purposes, both MSL (Tag 15) and HAE (Tag 75) representations of Sensor True Altitude MAY appear in the same ST 0601 packet. A single representation is preferred favoring the HAE version (Tag 75).

The Sensor Ellipsoid Height is the vertical distance between the sensor and the WGS84 Reference Ellipsoid. Measurement is GPS derived.

8.76 Tag 76: Alternate Platform Ellipsoid Height Conversion

LS Tag	76 Alternate Platform Ellipsoid	Units Meters	Range -90019000	Format		
LS Name	Height	Meters	-90019000	dincio		
US Mapped Key	06 0E 2B 34 01 01 01 01 0E 01 02 01 82 48 00 00					
Notes		Conversion Formula				
	- Alternate Platform Ellipsoid Height as measured from the reference WGS84		$= \left(\frac{\text{LS range}}{\text{uint_range}} * \text{LS_}\right)$	•		
- Map 0(2^	16-1) to -90019000 meters.	LS_76	$6_$ dec = $\left(\frac{19900}{65535} * LS\right)$	_76) - 900		
- 1 meter = 3.2808399 feet.			·	·		
- Resolution: ~0.3 meters.						
Example Valu	Example Value					
9.445334 Mete	ers [K][L][V] = [0d76][0d2][0x0B	B3]				

8.76.1 Example Alternate Platform Ellipsoid Height

The Alternate Platform Ellipsoid Height is the vertical distance between the sensor and the WGS84 Reference Ellipsoid. Measurement is GPS derived.

8.77 Tag 77: Operational Mode Conversion

LS Tag	77	Units	Range	Format
LS Name	Operational Mode	None	None	uint8
US Mapped	06 0E 2B 34 01 01 01 01			
Key	0E 01 01 03 21 00 00 00			
Notes		Conversion	Formula	
- Indicates th	ne mode of operations of the		X	
event portra	ayed in metadata. Enumerated.		x	
- 0x00 = "Other	er"			
- 0x01 = "Open	rational"			
- 0x02 = "Trans	ining"			
- 0x03 = "Exer	rcise"			
- 0x04 = "Main	ntenance"			
- 0x05 = "Test	ε"			
Example Value	Example LS Packet			
Х	[K][L][V] = [0d77][0dx][x]			

8.77.1 Example Operational Mode

The Operational Mode provides an indication of the event portrayed in the metadata. This allows for categorization of Motion Imagery streams and is often useful for archival systems.

8.78 Tag 78: Frame Center Height Above Ellipsoid Conversion

LS Tag LS Name US Mapped Key	78 Frame Center Height Above Ellipsoid 06 0E 2B 34 01 01 01 01 0E 01 02 03 48 00 00 00	Units Meters	Range -90019000	Format uint16		
Notes		Conversion Formula				
- Frame Center Ellipsoid Height as measured from the reference WGS84 Ellipsoid Map 0(2^16-1) to -90019000 meters 1 meter = 3.2808399 feet Resolution: ~0.3 meters.			= \(\left(\frac{\text{LS range}}{\text{uint_range}}\) * \text{LS_uint_range} \(\text{LS_uint_range} \) \(\text{LS_1} \)	ŕ		
Example Valu	Example Value					
9.445334 Mete		OB B3]				

For legacy purposes, both MSL (Tag 25) and HAE (Tag 78) representations of Frame Center Elevation MAY appear in the same ST 0601 packet. A single representation is preferred favoring the HAE version (Tag 78).

The Frame Center Ellipsoid Height is the vertical distance on the ground within the center of the Motion Imagery frame and the WGS84 Reference Ellipsoid. Measurement is GPS derived.

8.79 Tag 79: Sensor North Velocity Conversion

LS Tag	79	Units	Range	Format	
LS Name	Sensor North Velocity	Meters/Se	+/-327	int16	
US Mapped Key	06 0E 2B 34 01 01 01 01 0E 01 02 02 7E 00 00 00	С			
Notes Conve			Conversion Formula		
- Northing velocity of the sensor or platform. Positive towards True North - Map-(2^15-1)(2^15-1) to +/-327 - Use -(2^15) as an "out of range" indicator (2^15) = 0x8000 Resolution: ~ 1 cm/sec.			$t = \left(\frac{\text{LS range}}{\text{int_range}}\right)$ $79 = \left(\frac{654}{65534}\right) *$	·	
Example Value	Example Value Example LS Packet				
X	[K][L][V] = [0d79][0dx][x]				

8.79.1 Example Sensor North Velocity

The Northing velocity of the sensor is the sensor movement rate in the north direction. Positive values indicate a sensor approaching True North.

Note that the int16 used in the LS value is encoded using two's complement.

8.80 Tag 80: Sensor East Velocity Conversion

LS Tag LS Name US Mapped Key	80 Sensor East Velocity 06 0E 2B 34 01 01 01 01 0E 01 02 02 7F 00 00 00	Units Meters/Se c	Range +/-327	Format int16
Notes		Conversion Fo	rmula	
- Easting velocity of the sensor or platform. Positive towards East Map-(2^15-1)(2^15-1) to +/-327 - Use -(2^15) as an "out of range" indicator(2^15) = 0x8000 Resolution: ~ 1 cm/sec.			$e = \left(\frac{\text{LS range}}{\text{int_range}}\right)$ $80 = \left(\frac{654}{65534}\right) *$,
Example Value	e Example LS Packet			
Х	[K][L][V] = [0d80][0dx][x]			

8.80.1 Example Sensor East Velocity

The Easting velocity of the sensor is the sensor movement rate in the east direction. Positive values indicate a sensor approaching east.

Note that the int16 used in the LS value is encoded using two's complement.

8.81 Tag 81: Image Horizon Pixel Pack Conversion

LS Tag	81	Units	Range	Format
LS Name	Image Horizon Pixel Pack	Pack	Pack	Pack
US Mapped	06 0E 2B 34 02 05 01 01			
Key	0E 01 03 02 08 00 00 00			
Notes		Conversion Formula		
- <tag 81=""><length> See Notes below.</length></tag>			·W.	
- < start x0,	start y0 // point p0			
- end x1, e	nd y1 // point p1			
- start lat	, start lon			
- end lat, end lon				
- >				
Example Value	Example LS Packet			
Х	[K][L][V] = [0d81][0dx][x]			

8.81.1 Description of Image Horizon Pixel Pack

The Image Horizon Pixel Pack allows a user to separate sky and ground portions of an image by defining a line representing the horizon. The method for detecting where the horizon is within the image is left to the system implementer.

The line representing the horizon which transects the image is defined by a vector with start and end points which must lie on the extents of the image. This is called the Horizon Vector. The horizontal (x) and vertical (y) coordinates are represented in a relative scale (from 0 to 100%) with (x,y) equal to (0%,0%) being the top left corner of the image.

Once start and end coordinates are defined, the pixels to the right of this Horizon Vector designates the ground region, while pixels to the left represent sky. Refer to Figure 8-21.

Figure 8-21: Horizon Vector

With the Horizon Vector defined, only the image corner points to the right are considered valid and allowed to be included within a ST 0601 packet. No invalid corner coordinates are allowed when the Image Horizon Pixel Pack is included in the same ST 0601 packet.

The Horizon Line and valid corner coordinates define the Pixel Frame (PF) (i.e. a polygon) which represents ground pixels.

In the example shown in Figure 8-21, corner point number 3 is the only valid corner point and is used with the start and end points to define a 3-point Pixel Frame.

Examples for 3-point, 4-point, and 5-point Pixel Frames are shown in Figure 8-22.

Figure 8-22: Pixel Frame Examples

Note that the pixel points p_0 through p_4 do not always directly correspond with the offset (Tags 26-33) or absolute (Tags 82-89) corner coordinates defined within this document.

8.81.2 Image Horizon Pixel Pack Example

To show how to use the Image Horizon Pixel Pack, consider the following example shown in Figure 8-23 for sample 720p airborne imagery:

Figure 8-23: Image Horizon Pixel Pack Example

In the example above, the horizon (barely visible through haze) is covered by the Horizon Vector with $p_0 = (0\%, 36.11\%)$, and $p_1 = (56.25\%, 0)$.

8.81.3 Decoding the Image Horizon Pixel Pack

When an Image Horizon Pixel Pack only includes the x & y coordinates of the Horizon Vector and not the geo-locations, the Horizon Vector is used to determine the image pixel coordinates (derived from the relative values) which construct the Pixel Frame.

When the latitudes and longitudes of the Horizon Vector are included, these geo-locations along with the valid offset or absolute corner coordinates in the same ST 0601 packet are then matched with the appropriate points defined by the Pixel Frame.

8.81.4 Floating Length Pack Definition for the Image Horizon Pixel Pack

The Image Horizon Pixel Pack makes use of a Floating Length Pack as described by MISB RP 0701 and allows a user to include or exclude data items as necessary. The first items defined within this pack are the start and end x & y coordinates representing the start and end of the Horizon Vector. These are then followed by real earth latitude-longitude geo-coordinate pairs for the start and end points of the Horizon Vector.

As used here, the minimum required components are the start and end x & y points defining the Horizon Vector in image space, and the latitudes/longitudes of these points are optional (but recommended). Contents are defined in Table 2:

ST 0601.8 UAS Datalink Local Set

Table 2: Image Horizon Pixel Pack

Local Set Key	Name
06 0E 2B 34 - 02 05 01 01 - 0E 01 03 02 - 08 00 00 00	Image Horizon Pixel Pack
(CRC 37658)	

(CRC 37658)					
		Constituent Elements			
Key	Name	Notes	Units/Range	Format	Len
06 0E 2B 34 01 01 01 01 0E 01 01 02 09 01 00 00 (CRC 3334)	Start x0	The X coordinate (in percent) of an X-Y pair representing the start point of a vector crossing an image. Top left of image is 0,0 with positive X increasing to the right. To be used with Start y0. Mandatory in the Image Horizon Pixel Pack.	Percent [0100]	Uint8	1
06 0E 2B 34 01 01 01 01 0E 01 01 02 09 02 00 00 (CRC 21590)	Start y0	The Y coordinate (in percent) of an X-Y pair representing the start point of a vector crossing an image. Top left of image is 0.0 with positive Y increasing down. To be used with Start x0. Mandatory in the Image Horizon Pixel Pack.	Percent [0100]	Uint8	1
06 0E 2B 34 01 01 01 01 0E 01 01 02 09 03 00 00 (CRC 25446)	End x1	The X coordinate (in percent) of an X-Y pair representing the end point of a vector crossing an image. Top left of image is 0,0 with positive X increasing to the right. To be used with End y0. Mandatory in the Image Horizon Pixel Pack.	Percent [0100]	Uint8	1
06 0E 2B 34 01 01 01 01 0E 01 01 02 09 04 00 0 (CRC 59126)	End y1	The Y coordinate (in percent) of an X-Y pair representing the end point of a vector crossing an image. Top left of image is 0.0 with positive Y increasing down. To be used with End x0. Mandatory in the Image Horizon Pixel Pack.	Percent [0100]	Uint8	1
06 0E 2B 34 01 01 01 01 0E 01 01 02 09 05 00 00 (CRC 53702)	Start Latitude	The Latitude of the Start point $(x0,y0)$ on the image border. Based on WGS84 ellipsoid. Map $-(2^31-1)(2^31-1)$ to $+/-90$. Use (-2^31) as an "error" indicator. Optional (but recommended).	Degrees [-90+90]	Int32	4
06 0E 2B 34 01 01 01 01 0E 01 01 02 09 06 00 00 (CRC 34966)	Start Longitude	The Longitude of the Start point $(x0,y0)$ on the image boarder. Based on WGS84 ellipsoid. Map $-(2^31-1)(2^31-1)$ to $+/-180$. Use (-2^31) as an "error" indicator. Optional (but recommended).	Degrees [-180+180]	Int32	4
06 0E 2B 34 01 01 01 01 0E 01 01 02 09 07 00 00 (CRC 49062)	End Latitude	The Latitude of the End point $(x1,y1)$ on the image boarder. Based on WGS84 ellipsoid. Map $-(2^31-1)(2^31-1)$ to $+/-90$. Use (-2^31) as an "error" indicator. Optional (but recommended).	Degrees [-90+90]	Int32	4
06 0E 2B 34 01 01 01 01 0E 01 01 02 09 08 00 00 (CRC 37783)	End Longitude	The Longitude of the End point $(x1,y1)$ on the image boarder. Based on WGS84 ellipsoid. Map $-(2^31-1)(2^31-1)$ to $+/-180$. Use (-2^31) as an "error" indicator. Optional (but recommended).	Degrees [-180+180]	Int32	4

8.82 Tag 82: Corner Latitude Point 1 (Full) Conversion

LS Tag	82 Corner Latitude	Daint 1	Units	Range	Format
LS Name	(Full)	Point 1	Degrees	+/- 90	int32
US Mapped	Use EG0104 US K	еу			
Key					
Notes			Conversion Form	nula	
	de for upper lef	t corner.	I.S. dec =	$\left(\frac{\text{LS range}}{\text{int range}} * \text{L}\right)$	s int
- Full Range.	104 - 111 1			(int_range	10_111c /
- Based on WGS)(2^31-1) to +	/-90	LS 82 dec	$=$ $\left(\frac{180}{4294967294}\right)$	* LS 82)
<u> </u>	as an "error" in		_ = =	4294907294	- /
$-(2^31) = 0x$					
	~42 nano degrees				
Example Value		Example LS Page			
-10.57963799988 Degrees	37 Corrected	[K][L][V] = [0d	182][0d2][0xC0 6E]	
	06 0E 2B 34 01	01 01 03		Rq	
US Key	07 01 02 01 03		ESD Digraph	1/9	
US Name	Corner Latitude (Decimal Degree		ESD Name SAR Latitude 4		
Units	Range	Format	Units	Range	Format
Degrees	+/- 90	Double	Degrees	+/- 90.00	PDDMMSST
Notes			Notes		
	rdinate of corne	r 1 of an image		of the upper lef	t corner of the
or bounding	is northern hem	i snhere	SAR image box	· •	
	is southern hem	-			
· /	US Conversion	1	ESD Conversion		
IIC dee -	/180 +	c :== \	ECD dee -	$\left(\frac{180}{4294967294} *\right)$	TO : \
$US_dec = \left(\frac{180}{4294967294} * LS_int\right)$			ESD_dec =	\ 4294967294 ^	rs ⁻ int)
<u>To US:</u>			<u>To ESD:</u>		
- US = (double) (180/0xFFFFFFFE * LS)			- Convert LS to decimal.		
To LS:			- Convert decimal to ASCII.		
- LS = $(int32)r$	cound(0xFFFFFFFE/	180 * US)	<u>To LS:</u>		
			- Convert ASCII - Map decimal t		

8.82.1 Example Corner Latitude Point 1 (Full) Conversion

For legacy purposes, both range-restricted (Tags 26-33) and full-range (Tag 82-89) representations of Image Corner Coordinates MAY appear in the same ST 0601 packet. A single representation is preferred, with the full-range version (Tags 82-89) being favored as per Section 6.3.

The corner points of the captured image or image sequence have a real earth coordinate represented by a latitude-longitude pair. Corner points that lie above the horizon typically do not correspond to a point on the earth, should either not be reported, or be reported as an "error".

Corner point 1 is the upper left corner of the captured image as highlighted in red (Figure 8-24).

Figure 8-24: Offset Corner Point 1

Value is encoded using two's complement.

8.83 Tag 83: Corner Longitude Point 1 (Full) Conversion

LS Tag	83		Units	Range	Format
LS Name	Corner Longitud	e Point 1	Degrees	+/- 180	int32
	(Full)				
US Mapped	Use EG0104 US K	ey			
Key					
Notes			Conversion Form	nula	
- Frame Longit - Full Range.	ude for upper le	ft corner.	LS_dec =	$\left(\frac{\text{LS range}}{\text{int range}} * \text{L}\right)$	S_int)
- Based on WGS	884 ellipsoid.			`	,
	.)(2^31-1) to +	/-180.	LS_83_dec	$= \left(\frac{360}{4294967294} *\right.$	LS_83)
	as an "error" in	dicator.		•	,
$-(2^31) = 0x$					
	~84 nano degrees		-14		
Example Value 29.127367798633	22 (2	Example LS Page		1	
29.12/36//98633 Degrees	33 Corrected	[K][L][V] = [UC	183][0d2][0xCB E9]	
	06 OE 2B 34 O1	01 01 03	E0D D'	Rh	
US Key	07 01 02 01 03		ESD Digraph		
US Name	Corner Longitud (Decimal Degree		ESD Name	SAR Longitude 4	
Units	Range	Format	Units	Range	Format
Degrees	+/- 180	Double	Degrees	+/- 180.00	PDDDMMSST
Notes			Notes		
_	ordinate of corn	er 1 of an	- The longitude of the upper left corner of		
_	unding rectangle. is eastern hemi	anhoro	the SAR image	e box.	
	is western hemi	-			
110940110 ()	US Conversion	<u> </u>	ESD Conversion		
HQ -1		(a. tat)	DOD de-	(360 4294967294 *	T.O
US_dec = $\left(\frac{360}{4294967294} * LS_int\right)$			ESD_aec =	\ 4294967294 *	rs ⁻ rut)
To US:			To ESD:		
- US = (double)(360/0xFFFFFFFE * LS)			- Convert LS to decimal.		
To LS:			- Convert decimal to ASCII.		
- LS = $(int32)r$	cound(0xFFFFFFFE/	360 * US)	<u>To LS:</u>		
			- Convert ASCII		
			- Map decimal t	co int32.	

8.83.1 Example Corner Longitude Point 1 (Full) Conversion

For legacy purposes, both range-restricted (Tags 26-33) and full-range (Tag 82-89) representations of Image Corner Coordinates MAY appear in the same ST 0601 packet. A single representation is preferred, with the full-range version (Tags 82-89) being favored as per Section 6.3.

The corner points of the captured image or image sequence have a real earth coordinate represented by a latitude-longitude pair. Corner points that lie above the horizon typically do not correspond to a point on the earth (an example being the tracking of an airborne object), should either not be reported, or be reported as an "error".

Corner point 1 is the upper left corner of the captured image. See Figure 8-24 for Tag 82 above.

8.84 Tag 84: Corner Latitude Point 2 (Full) Conversion

LS Tag LS Name	84 Corner Latitude	Point 2	Units Degrees	Range +/- 90	Format int32
US Mapped Kev	(Full) Use EG0104 US K	еу			
Notes			Conversion Form	nula	
- Frame Latitu - Full Range.	de for upper rig	ht corner.	LS_dec =	$\left(\frac{\text{LS range}}{\text{int_range}} * \text{L}\right)$	S_int)
- Use $-(2^31)$ - $-(2^31) = 0x$)(2 ³¹ -1) to + as an "error" in 80000000.	dicator.	LS_84_dec	$= \left(\frac{180}{4294967294}\right)^{-1}$	* LS_84)
Example Value	~42 nano degrees	Example LS Pag	cket		
-10.56618162609	63 Corrected		184][0d2][0xD7 65]	
US Key	06 0E 2B 34 01 07 01 02 01 03		ESD Digraph	Ra	
US Name	Corner Latitude (Decimal Degree		ESD Name SAR Latitude 1		
Units	Range	Format	Units	Range	Format
Degrees	+/- 90	Double	Degrees	+/- 90.00	PDDMMSST
Notes			Notes		
	rdinate of corne	r 2 of an image		of the upper right	ht corner of
or bounding	-		the SAR image	box.	
	is northern hem is southern hem	-			
Negative ()	US Conversion	isplicie.	ESD Conversion		
US_dec = $\left(\frac{180}{4294967294} * LS_int\right)$			ESD_dec = $\left(\frac{180}{4294967294} * LS_int\right)$		
US_dec = \(\frac{4294967294}{4294967294} \times LS_int\) To US: - US = (double) (180/0xffffffff \times LS) To LS: - LS = (int32) round (0xffffffffffffffffffffffffffffffffffff			To ESD: - Convert LS to - Convert decim To LS: - Convert ASCII - Map decimal t	decimal. al to ASCII. to decimal.	ŕ

8.84.1 Example Corner Latitude Point 2 (Full) Conversion

For legacy purposes, both range-restricted (Tags 26-33) and full-range (Tag 82-89) representations of Image Corner Coordinates MAY appear in the same ST 0601 packet. A single representation is preferred, with the full-range version (Tags 82-89) being favored as per Section 6.3.

The corner points of the captured image or image sequence have a real earth coordinate represented by a latitude-longitude pair. Corner points that lie above the horizon typically do not correspond to a point on the earth, should either not be reported, or be reported as an "error".

Corner point 2 is the upper right corner of the captured image as highlighted in red (Figure 8-25).

Figure 8-25: Offset Corner Point 2

Value is encoded using two's complement.

8.85 Tag 85: Corner Longitude Point 2 (Full) Conversion

LS Tag LS Name	85 Corner Longitud	e Point 2	Units Degrees	Range +/- 180	Format
US Mapped Key	(Full) Use EG0104 US K	еу	-		
Notes			Conversion Form	nula	
- Frame Longit - Full Range.	ude for upper ri	ght corner.	LS_dec =	$\left(\frac{\text{LS range}}{\text{int_range}} * \text{LS}\right)$	S_int)
- Use $-(2^31)$ - $-(2^31) = 0x$)(2^31-1) to + as an "error" in	dicator.	LS_85_dec	$= \left(\frac{360}{4294967294} *\right.$	LS_85)
Example Value	~64 Hallo degrees	Example LS Pag	rket		
29.140824172424	Corrected		185][0d2][0xE2 E0]	
US Key	06 0E 2B 34 01 07 01 02 01 03		ESD Digraph	Rb	
US Name	Corner Longitud (Decimal Degree		ESD Name SAR Longitude 1		
Units	Range	Format	Units	Range	Format
Degrees	+/- 180	Double	Degrees	+/- 180.00	PDDDMMSST
image or bou - Positive (+)	ordinate of corn nding rectangle. is eastern hemi is western hemi	sphere.	Notes - The longitude the SAR image	e of the upper rice box.	ght corner of
	US Conversion		ESD Conversion		
$US_dec = \left(\frac{360}{4294967294} * LS_int\right)$			ESD_dec =	$\left(\frac{360}{4294967294} * \right)$	LS_int)
To LS:	(360/0xfffffffe	,	To ESD: Convert LS to Convert decim To LS: Convert ASCII Map decimal t	nal to ASCII.	

8.85.1 Example Corner Longitude Point 2 (Full) Conversion

For legacy purposes, both range-restricted (Tags 26-33) and full-range (Tag 82-89) representations of Image Corner Coordinates MAY appear in the same ST 0601 packet. A single representation is preferred, with the full-range version (Tags 82-89) being favored as per Section 6.3.

The corner points of the captured image or image sequence have a real earth coordinate represented by a latitude-longitude pair. Corner points that lie above the horizon typically do not correspond to a point on the earth (an example being the tracking of an airborne object), should either not be reported, or be reported as an "error".

Corner point 2 is the upper right corner of the captured image. See Figure 8-25 for Tag 84 above.

8.86 Tag 86: Corner Latitude Point 3 (Full) Conversion

LS Tag	86		Units	Range	Format
LS Name	Corner Latitude	Point 3	Degrees	+/- 90	int32
LIC Mannad	(Full) Use EG0104 US K	077			
US Mapped	050 100104 05 10	Сy			
Key			O	. 1.	
Notes			Conversion Form		
- Frame Latitu - Full Range.	de for lower rig	nt corner.	LS_dec =	$\left(\frac{\text{LS range}}{\text{int}_{\text{range}}} * \text{LS}\right)$	S_int)
- Based on WGS	=		70.00.1	$= \left(\frac{180}{4294967294} \right. *$	- a a a a
<u> </u>) (2^31-1) to +		LS_86_dec	= (4294967294 *	LS_86)
	as an "error" in	dicator.			
$-(2^31) = 0x$					
	~42 nano degrees		-14		
Example Value		Example LS Pag		,	
-10.55272754119	38 Corrected	[K][L][V] = [0c	186][0d2][0xEE 5B]	
Degrees	06 0E 2B 34 01	01 01 02		Rc	
US Key	07 01 02 01 03		ESD Digraph	RC	
US Name	Corner Latitude (Decimal Degree		ESD Name SAR Latitude 2		
Units	Range	Format	Units	Range	Format
Degrees	+/- 90	Double	Degrees	+/- 90.00	PDDMMSST
Notes			Notes		
	rdinate of corne	r 3 of an image		of the lower righ	nt corner of
or bounding	-		the SAR image	box.	
	is northern hem				
- Negative (-)	is southern hem	isphere.			
	US Conversion			ESD Conversion	
$US_dec = \left(\frac{180}{4294967294} * LS_int\right)$			$ESD_{dec} = \left(\frac{180}{4294967294} * LS_{int}\right)$		
To US:			To ESD:		
- US = (double) (180/0xFFFFFFF * LS)			- Convert LS to decimal.		
To LS:			- Convert decimal to ASCII.		
	ound(0xFFFFFFFE/	180 * US)	To LS:		
	,	•	- Convert ASCII	to decimal.	
			- Map decimal t	o int32.	

8.86.1 Example Corner Latitude Point 3 (Full) Conversion

For legacy purposes, both range-restricted (Tags 26-33) and full-range (Tag 82-89) representations of Image Corner Coordinates MAY appear in the same ST 0601 packet. A single representation is preferred, with the full-range version (Tags 82-89) being favored as per Section 6.3.

The corner points of the captured image or image sequence have a real earth coordinate represented by a latitude-longitude pair. Corner points that lie above the horizon typically do not correspond to a point on the earth, should either not be reported, or be reported as an "error".

Corner point 3 is the lower right corner of the captured image as highlighted in red (Figure 8-26).

Figure 8-26: Offset Corner Point 3

Value is encoded using two's complement.

8.87 Tag 87: Corner Longitude Point 3 (Full) Conversion

LS Tag	87		Units	Range	Format
LS Name	Corner Longitud	e Point 3	Degrees	+/- 180	int32
110.14	(Full)				
US Mapped	Use EG0104 US K	ey			
Key			Conversion Form	n. do	
Notes					
- Frame Longit - Full Range.	ude for lower ri	gnt corner.	LS_dec =	$\left(\frac{\text{LS range}}{\text{int range}} * \text{L}\right)$	S_int)
- Based on WGS	84 ellipsoid.			`	ŕ
<u> </u>) (2^31-1) to +		LS_87_dec	$= \left(\frac{360}{4294967294} \right. *$	LS_87)
	as an "error" in	dicator.			
$-(2^31) = 0x$	80000000. ~84 nano degrees				
Example Value	-04 Hano degrees	Example LS Pag	cket		
29.154278257326	5 Corrected		187][0d2][0xF9 D6]	
Degrees	_				
US Key	06 0E 2B 34 01 07 01 02 01 03		ESD Digraph	Rd	
US Name	Corner Longitud (Decimal Degree		ESD Name	SAR Longitude 2	
Units	Range	Format	Units	Range	Format
Degrees	+/- 180	Double	Degrees	+/- 180.00	PDDDMMSST
Notes			Notes		
_	ordinate of cornading rectangle.	er 3 of an	- The longitude of the lower right corner of the SAR image box.		
_	is eastern hemi	sphere.	the SAN Image	: DOA:	
	is western hemi	-			
	US Conversion		ESD Conversion		
$US_{dec} = \left(\frac{360}{4294967294} * LS_{int}\right)$			$ESD_{dec} = \left(\frac{360}{4294967294} * LS_{int}\right)$		
To US:			To ESD:		
- US = (double) (360/0xFFFFFFFE * LS)			- Convert LS to decimal.		
<u>To LS:</u>			- Convert decimal to ASCII.		
- LS = $(int32)r$	ound(0xFFFFFFFE/	360 * US)	To LS:		
			- Convert ASCII		
			- Map decimal t	.O INT32.	

8.87.1 Example Corner Longitude Point 3 (Full) Conversion

For legacy purposes, both range-restricted (Tags 26-33) and full-range (Tag 82-89) representations of Image Corner Coordinates MAY appear in the same ST 0601 packet. A single representation is preferred, with the full-range version (Tags 82-89) being favored as per Section 6.3.

The corner points of the captured image or image sequence have a real earth coordinate represented by a latitude-longitude pair. Corner points that lie above the horizon typically do not correspond to a point on the earth (an example being the tracking of an airborne object), should either not be reported, or be reported as an "error".

Corner point 3 is the lower right corner of the captured image. See Figure 8-26 for Tag 86 above.

8.88 Tag 88: Corner Latitude Point 4 (Full) Conversion

LS Tag	88		Units	Range	Format
LS Name	Corner Latitude	Point 4	Degrees	+/- 90	int32
LIC Mannad	(Full) Use EG0104 US K	017			
US Mapped	OSC EGGIGG OB I	Cy			
Key			0		
Notes			Conversion Form	nuia ble)(180/0xFFFFFF	TER + TO)
	de for lower lef	t corner.	,		,
- Full Range. - Based on WGS	0/ 011:200:0		LS 88 dec	$=$ $\left(\frac{180}{4294967294} *\right)$	LS 88
)(2^31-1) to +	/-90		(1231301231	- /
-	as an "error" in				
$-(2^31) = 0x$					
` '	~42 nano degrees				
Example Value		Example LS Pag	cket		
-10.53927116740	31 Corrected		[88] [0d2] [0x05 52]	
Degrees					
US Key	06 0E 2B 34 01 07 01 02 01 03		ESD Digraph	Re	
US Name	Corner Latitude (Decimal Degree		ESD Name SAR Latitude 3		
Units	Range	Format	Units	Range	Format
Degrees	+/- 90	Double	Degrees	+/- 90.00	PDDMMSST
Notes			Notes		
	rdinate of corne	r 4 of an image		of the lower left	t corner of the
or bounding	-	. ,	SAR image box	•	
	is northern hem is southern hem	-			
- Negative (=)	US Conversion	raphtere.		ESD Conversion	
					,
$US_dec = \left(\frac{180}{4294967294} * LS_int\right)$			ESD_dec =	$\left(\frac{180}{4294967294} * \right)$	LS_int)
<u>To US:</u>			To ESD:		
- US = (double) (180/0xFFFFFFFE * LS)			- Convert LS to decimal.		
<u>To LS:</u>			- Convert decimal to ASCII.		
-LS = (int32)r	ound(0xFFFFFFFE/	180 * US)	To LS:		
			- Convert ASCII	to decimal.	
			- Map decimal t	o int32.	

8.88.1 Example Corner Latitude Point 4 (Full) Conversion

For legacy purposes, both range-restricted (Tags 26-33) and full-range (Tag 82-89) representations of Image Corner Coordinates MAY appear in the same ST 0601 packet. A single representation is preferred, with the full-range version (Tags 82-89) being favored as per Section 6.3.

The corner points of the captured image or image sequence have a real earth coordinate represented by a latitude-longitude pair. Corner points that lie above the horizon typically do not correspond to a point on the earth, should either not be reported, or be reported as an "error".

Corner point 4 is the lower left corner of the captured image as highlighted in red (Figure 8-27).

Figure 8-27: Offset Corner Point 4

Value is encoded using two's complement.

8.89 Tag 89: Corner Longitude Point 4 (Full) Conversion

LS Tag	89		Units	Range	Format
LS Name	Corner Longitud	e Point 4	Degrees	+/- 180	int32
LIO Marrard	(Full) Use EG0104 US K				
US Mapped	USE EGUIU4 US N	еу			
Key Notes			Conversion Form	mula	
110100	ude for lower le	ft cornor			
- Full Range.	ude for lower le	it coiner.	LS_dec =	$\left(\frac{\text{LS range}}{\text{int range}} * \text{L}\right)$	S_int)
- Based on WGS	84 ellipsoid.			, 360	,
<u> </u>) (2^31-1) to +		LS_89_dec	$= \left(\frac{360}{4294967294} \right. *$	LS_89)
- Use $-(2^31)$ - $-(2^31) = 0x$	as an "error" in	dicator.			
	~84 nano degrees				
Example Value	11 mans asgrees	Example LS Pag	cket		
29.167734631117	2 Corrected		189][0d2][0x10 CD]	
Degrees	· · · · · · · · · · · · · · · · · · ·				
US Key	06 0E 2B 34 01 07 01 02 01 03		ESD Digraph	Rf	
US Name	Corner Longitud (Decimal Degree		ESD Name	SAR Longitude 3	
Units	Range	Format	Units	Range	Format
Degrees	+/- 180	Double	Degrees	+/- 180.00	PDDDMMSST
Notes			Notes		
_	ordinate of cornading rectangle.	er 4 of an	- The longitude of the lower left corner of the SAR image box.		
_	is eastern hemi	sphere.	che brit image	, box.	
	is western hemi	-			
	US Conversion		ESD Conversion		
$US_dec = \left(\frac{360}{4294967294} * LS_int\right)$			$ESD_{dec} = \left(\frac{360}{4294967294} * LS_{int}\right)$		
<u>To US:</u>			To ESD:		
- US = (double)(360/0xFFFFFFFE * LS)			- Convert LS to decimal.		
<u>To LS:</u>			- Convert decimal to ASCII.		
- LS = $(int32)r$	ound(0xFFFFFFFE/	360 * US)	<u>To LS:</u>		
			- Convert ASCII		
			- Map decimal t	.0 111132.	

8.89.1 Example Corner Longitude Point 4 (Full) Conversion

For legacy purposes, both range-restricted (Tags 26-33) and full-range (Tag 82-89) representations of Image Corner Coordinates MAY appear in the same ST 0601 packet. A single representation is preferred, with the full-range version (Tags 82-89) being favored as per Section 6.3.

The corner points of the captured image or image sequence have a real earth coordinate represented by a latitude-longitude pair. Corner points that lie above the horizon typically do not correspond to a point on the earth (an example being the tracking of an airborne object), should either not be reported, or be reported as an "error".

Corner point 4 is the lower left corner of the captured image. See Figure 8-27 for Tag 88 above.

8.90 Tag 90: Platform Pitch Angle (Full) Conversion

LS Tag LS Name US Mapped	90 Platform Pitch A Use EG0104 US Ke		Units Degrees	Range +/- 90	Format int32
Key					
Notes			Conversion Form		
- Aircraft pitch angle. Angle between longitudinal axis and horizontal plane Positive angles above horizontal plane Map -(2^31-1)(2^31-1) to +/-90 Use -(2^31) as an "out of range" indicator(2^31) = 0x80000000.				ole) $(180/0 \times FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF$	
- Res: ~42 nan	o deg.				
Example Value		Example LS Pac		1	
-0.4315251 Degr		[K][L][V] = [UC 01 01 07	190][0d2][0xFD 3D	Ip	
US Key	07 01 10 01 05		ESD Digraph	±P	
US Name	Platform Pitch A	ngle	ESD Name	UAV Pitch (INS)	
Units	Range	Format	Units	Range	Format
Notes Notes	+/- 90	Float	Degrees Notes	+/- 20.00	PDD.HH
Pitch angle degrees.The Pitch of the angle th	of platform expre an airborne plat e longitudinal ax al (i.e., equi-po l surface);	form describes is makes with		f the aircraft.	
	US Conversion		ESD Conversion		
$US_{dec} = \left(\frac{180}{4294967294} * LS_{int}\right)$			ESD_dec = $\left(\frac{180}{4294967294} * LS_int\right)$		
To LS:	(180/0xFFFFFFFE *		To ESD: - Convert LS to - Convert decim To LS: - Convert ASCII - Map decimal t	al to ASCII. to decimal.	

8.90.1 Example Platform Pitch Angle (Full) Conversion

For legacy purposes, both range-restricted (Tag 6) and full-range (Tag 90) representations of Platform Pitch Angle MAY appear in the same ST 0601 packet. A single representation is preferred, with the full-range version (Tag 90) being favored as per Section 6.3.

The pitch angle of the platform is the angle between the longitudinal axis (line made by the fuselage) and the horizontal plane. Angles are positive when the platform nose is above the horizontal plane. This item allows unrestricted pitch angle values (see Figure 8-28).

ST 0601.8 UAS Datalink Local Set

Figure 8-28: Platform Pitch Angle

Note that the int32 used in the LS value is encoded using two's complement.

8.91 Tag 91: Platform Roll Angle (Full) Conversion

LS Tag LS Name US Mapped	91 Platform Roll An Use EG0104 US Ke		Units Degrees	Range +/- 90	Format int32
Key					
Notes			Conversion Form	nula	
- Platform roll angle. Angle between transverse axis and transvers-longitudinal plane. Positive angles for lowered right wing. - Map - (2^31-1)(2^31-1) to +/-90. - Use - (2^31) as an "error" indicator. (2^31) = 0x80000000.				$\left(\frac{\text{LS range}}{\text{int_range}} * \text{LS}\right)$ $= \left(\frac{180}{4294967294} * \right)$	·
	~42 nano degrees.				
Example Value	-	Example LS Pac		1	
3.405814 Degree	06 OE 2B 34 O1		[91][0d2][0x08 B8] Tr	
US Key	07 01 10 01 04		ESD Digraph	11	
US Name	Platform Roll A	ngle	ESD Name	UAV Roll (INS)	
Units	Range	Format	Units	Range	Format
Degrees	+/- 90	Float	Degrees Notes	+/- 50.00	PDD.HH
degrees The Roll of rotation abo back) axis; - Wings level (negative) a	f platform expres an airborne platf ut its longitudir is zero degrees, ngles describe a with the right wi	Form is al (front-to-	- Roll angle of	the aircraft.	
	US Conversion			ESD Conversion	
US_dec =	$\left(\frac{180}{4294967294} * L\right)$	S_int)	ESD_dec =	$\left(\frac{180}{4294967294} * 1\right)$	LS_int)
To LS:	(180/0xFFFFFFFF *ound(0xFFFFFFFE/1		To ESD: - Convert LS to - Convert decim To LS: - Convert ASCII - Map decimal t	al to ASCII. to decimal.	

8.91.1 Example Platform Roll Angle (Full) Conversion

For legacy purposes, both range-restricted (Tag 7) and full-range (Tag 91) representations of Platform Roll Angle MAY appear in the same ST 0601 packet. A single representation is preferred, with the full-range version (Tag 91) being favored as per Section 6.3.

The rotation operation performed about the longitudinal axis forms the roll angle between the previous aircraft transverse-longitudinal plane and the new transverse axis location (line from wing tip to wing tip). Positive angles correspond to the starboard (right) wing lowered below the previous aircraft transverse-longitudinal plane. This item allows unrestricted roll angles (see Figure 8-29).

ST 0601.8 UAS Datalink Local Set

Figure 8-29: Platform Roll Angle

8.92 Tag 92: Platform Angle of Attack (Full) Conversion

LS Tag LS Name US Mapped	92 Platform Angle of Attack (Full) 06 0E 2B 34 01 01 01 01	Units Degrees	Range +/- 90	Format int32
Key	0E 01 01 01 02 00 00 00			
Notes		Conversion F	ormula	
platform 1 wind Positive a: - Map -(2^31			$ec = \left(\frac{LS \text{ range}}{\text{int}_{\text{range}}}\right)$ $dec = \left(\frac{180}{42949672}\right)$	•
Example Value	e Example LS Packet			
-8.670177 Degrees	[K][L][V] = [0d92][0d2][0x0]	28 83]		

8.92.1 Example Platform Angle of Attack (Full) Conversion

For legacy purposes, both range-restricted (Tag 50) and full-range (Tag 92) representations of Platform Angle of Attack MAY appear in the same ST 0601 packet. A single representation is preferred, with the full-range version (Tag 92) being favored as per Section 6.3.

The angle of attack of an airborne platform is the angle formed between the relative wind and platform longitudinal axis (line made by the fuselage). Positive angles for wind with a relative upward component. Refer to Figure 8-30.

Figure 8-30: Platform Angle of Attack

Note that the int32 used in the LS value is encoded using two's complement.

8.93 Tag 93: Platform Sideslip Angle (Full) Conversion

LS Tag LS Name US Mapped Key	93 Platform Sideslip Angle (Full) 06 0E 2B 34 01 01 01 01 0E 01 01 01 04 00 00 00	Units Degrees	Range +/- 180	Format int32
Notes		Conversion F	ormula	
axis and re - Full Range - Positive ar left Map -(2^31-	ngles to right wing, neg to -1)(2^31-1) to +/-90. as an "out of range" 0x80000000. ano deg.	LS_de	$ec = \left(\frac{LS \text{ range}}{\text{int_range}}\right)$ $dec = \left(\frac{360}{42949672}\right)$	•
Example Value	Example LS Packet			
X	[K][L][V] = [0d93][0dx][x]			

8.93.1 Example Platform Sideslip Angle (Full) Conversion

For legacy purposes, both range-restricted (Tag 52) and full-range (Tag 93) representations of Platform Sideslip Angle MAY appear in the same ST 0601 packet. A single representation is preferred, with the full-range version (Tag 93) being favored as per Section 6.3.

The angle formed between the platform longitudinal axis (line made by the fuselage) and the relative wind is the sideslip angle. A negative sideslip angle is depicted in Figure 8-31:

Figure 8-31: Platform Sideslip Angle

Note that the int32 used in the LS value is encoded using two's complement.

8.94 Tag 94: MIIS Core Identifier

LS Tag LS Name US Mapped	94 MIIS Core Identifier Use ST1204 MIIS Core 16- byte Key.		Units None	Range None	Format Binary Value
Key Notes			Conversion Formula		
- Local set tag to include the ST1204 MIIS Core Identifier Binary Value within ST0601. Use according to the rules and requirements defined in ST1204.				x x	
Example Value Example LS		Example LS Pac			
Х		[K][L][V] = [0d9]	94][0dx][x]		
US Key	06 0E 2B 34 0E 01 04 05	01 01 01 01 03 00 00 00	ESD Digraph	х	
US Name	Motion Imagery Identification System Core		ESD Name	х	
Units	Range	Format	Units	Range	Format
None	None	Set	X	Х	x

8.94.1 Example MIIS Core Identifier Details

ST 0601 Tag 94 allows users to include the MIIS Core Identifier (ST1204) <u>Binary Value</u> (opposed to the text-based representation) within ST 0601. Tag 94's value does not include ST1204's 16 byte Key or length, only the value portion.

See MISB ST 1204 [18] for generation and usage requirements.

8.95 Tag 95: SAR Motion Imagery Metadata

LS Tag LS Name	95 SAR Motion Imagery Metadata		Units None	Range None	Format Set
US Mapped	Use ST1206 SARMI 16-byte		None	World	500
Кеу	Key.	THUIT 10 2,00			
Notes			Conversion Formula		
	_	the ST1206 SAR		X	
Motion Imagery Metadata Local Set data			Х		
within ST0601. Use according to the rules and requirements defined in					
ST1206.					
Example Value Example LS Pac			ket		
X		[K][L][V] = [0d9]	95][0dx][x]		
US Key	06 0E 2B 34 02 0B 01 01 0E 01 03 03 0D 00 00 00		ESD Digraph	Х	
US Name	SAR Motion Imagery Metadata		ESD Name	х	
Units	Range	Format	Units	Range	Format
None	None	Set	X	x	Х

8.95.1 Example SAR Motion Imagery Metadata Details

ST 0601 Tag 95 allows users to include the SAR Motion Imagery Metadata (ST1206) within ST 0601. The SARMI metadata set allows users to exploit both sequential synthetic aperture radar (SAR) imagery and sequential SAR cohenrent change products as Motion Imagery.

See MISB ST 1206 [19] for generation and usage requirements.

9 Appendix A - Deprecated Requirements

The following requirement was deprecated in ST 0601.6.

REQ-2.08 (ST 0601 decoders shall accept Universal Keys with any version number represented within byte 8.) as this is difficult to enforce from a compliance perspective, and is in with another requirement specifying the exact 16-byte KLV key to use (REQ-1.02) [REQ-1.02 is now REQ. ST 0601.8-18].